Search Results

Now showing 1 - 3 of 3
Loading...
Thumbnail Image
Item

Projecting Antarctic ice discharge using response functions from SeaRISE ice-sheet models

2014, Levermann, A., Winkelmann, R., Nowicki, S., Fastook, J.L., Frieler, K., Greve, R., Hellmer, H.H., Martin, M.A., Meinshausen, M., Mengel, M., Payne, A.J., Pollard, D., Sato, T., Timmermann, R., Wang, W.L., Bindschadler, R.A.

The largest uncertainty in projections of future sea-level change results from the potentially changing dynamical ice discharge from Antarctica. Basal ice-shelf melting induced by a warming ocean has been identified as a major cause for additional ice flow across the grounding line. Here we attempt to estimate the uncertainty range of future ice discharge from Antarctica by combining uncertainty in the climatic forcing, the oceanic response and the ice-sheet model response. The uncertainty in the global mean temperature increase is obtained from historically constrained emulations with the MAGICC-6.0 (Model for the Assessment of Greenhouse gas Induced Climate Change) model. The oceanic forcing is derived from scaling of the subsurface with the atmospheric warming from 19 comprehensive climate models of the Coupled Model Intercomparison Project (CMIP-5) and two ocean models from the EU-project Ice2Sea. The dynamic ice-sheet response is derived from linear response functions for basal ice-shelf melting for four different Antarctic drainage regions using experiments from the Sea-level Response to Ice Sheet Evolution (SeaRISE) intercomparison project with five different Antarctic ice-sheet models. The resulting uncertainty range for the historic Antarctic contribution to global sea-level rise from 1992 to 2011 agrees with the observed contribution for this period if we use the three ice-sheet models with an explicit representation of ice-shelf dynamics and account for the time-delayed warming of the oceanic subsurface compared to the surface air temperature. The median of the additional ice loss for the 21st century is computed to 0.07 m (66% range: 0.02–0.14 m; 90% range: 0.0–0.23 m) of global sea-level equivalent for the low-emission RCP-2.6 (Representative Concentration Pathway) scenario and 0.09 m (66% range: 0.04–0.21 m; 90% range: 0.01–0.37 m) for the strongest RCP-8.5. Assuming no time delay between the atmospheric warming and the oceanic subsurface, these values increase to 0.09 m (66% range: 0.04–0.17 m; 90% range: 0.02–0.25 m) for RCP-2.6 and 0.15 m (66% range: 0.07–0.28 m; 90% range: 0.04–0.43 m) for RCP-8.5. All probability distributions are highly skewed towards high values. The applied ice-sheet models are coarse resolution with limitations in the representation of grounding-line motion. Within the constraints of the applied methods, the uncertainty induced from different ice-sheet models is smaller than that induced by the external forcing to the ice sheets.

Loading...
Thumbnail Image
Item

Magnetic flux-trapping of anisotropic-grown Y-Ba-Cu-O bulk superconductors during and after pulsed-field magnetizing processes

2014, Oka, T., Yamada, Y., Horiuchi, T., Ogawa, J., Fukui, S., Sato, T., Yokoyama, K., Langer, M.

The magnetic flux penetration into the melt-textured Y-Ba-Cu-O high temperature superconducting bulk magnets were precisely evaluated during and after the pulsed field magnetization processes operated at 30 K. The bulk magnets were carefully fabricated by the cold seeding method with use of a single and a pair of seed crystals composed of the Nd-Ba-Cu-O thin films. These seed crystals were put on the top surfaces of the precursors to let the large grains grow during the heat treatments. We observed the flux penetrations which occurred in the lower applied-field regions at around 3.1 T for the samples bearing the twin seeds than those of the single-seeded crystals at around 3.8 T. This means that the magnetic fluxes are capable of invading into the twin-seeded samples more easily than the single-seeds. It suggests that the anisotropic grain growths of parallel and normal to the rows of seed crystals affects the variations of Jc values with different distributions of the pinning centers, results in the preferential paths for the invading magnetic fluxes.

Loading...
Thumbnail Image
Item

Pulsed-field Invasion to HTS Bulk Magnets Grown from Two Seeds with Varied Seed-crystal Positions and Numbers

2014, Oka, T., Yamada, Y., Horiuchi, T., Ogawa, J., Fukui, S., Sato, T., Yokoyama, K., Langer, M.

The flux-invasion behavior into the melt-processed Y-Ba-Cu-O bulk magnets were precisely measured and analyzed during and after their pulsed-field magnetization processes operated at 30.6 K. The materials were fabricated as the bulk monoliths grown by adopting two seed-crystals, or shifting the seed-crystal positions from the centre of the sample surface, which exhibited the magnetically single-domain distributions. Although the performances of the trapped flux density after activations showed no obvious differences, the flux started invading into the sample bearing two seeds obviously at lower fields than those of normally-grown isotropic crystal. Since the flux penetration behavior were thus clearly different between the samples with the structure grown from two seeds and uniformly grown samples with a seed crystal, it is suggested that the structure results in an effective magnetizing method with less heating than those of conventional samples, which results in the higher performance of field trapping in the bulk magnets than usual.