Search Results

Now showing 1 - 2 of 2
  • Item
    HelixJet: An innovative plasma source for next-generation additive manufacturing (3D printing)
    (Hoboken, NJ : Wiley Interscience, 2020) Schäfer, Jan; Quade, Antje; Abrams, Kerry J.; Sigeneger, Florian; Becker, Markus M.; Majewski, Candice; Rodenburg, Cornelia
    A novel plasma source (HelixJet) for use in additive manufacturing (AM)/3D printing is proposed. The HelixJet is a capacitively coupled radio frequency plasma with a double-helix electrode configuration that generates a surprisingly stable and homogeneous glow plasma at low flow rates of argon and its mixtures at atmospheric pressure. The HelixJet was tested on three polyamide powders usually used to produce parts by laser sintering, a powder-based AM process, to form local deposits. The chemical composition of such plasma-printed samples is compared with thermally produced and laser-sintered samples with respect to differences in morphology that result from the different thermal cycles on several length scales. Plasma prints exhibit unique features attributable to the nonequilibrium chemistry and to the high-speed heat exchange.
  • Item
    Searching for order in atmospheric pressure plasma jets
    (Bristol : IOP Publ., 2017-11-10) Schäfer, Jan; Sigeneger, Florian; Šperka, Jiří; Rodenburg, Cornelia; Foest, Rüdiger
    The self-organized discharge behaviour occurring in a non-thermal radio-frequency plasma jet in rare gases at atmospheric pressure was investigated. The frequency of the azimuthal rotation of filaments in the active plasma volume and their inclination were measured along with the gas temperature under varying discharge conditions. The gas flow and heating were described theoretically by a three-dimensional hydrodynamic model. The rotation frequencies obtained by both methods qualitatively agree. The results demonstrate that the plasma filaments forming an inclination angle α with the axial gas velocity uz are forced to a transversal movement with the velocity uφ=tan(α)*uz, which is oriented in the inclination direction. Variations of ${u}_{\phi }$ in the model reveal that the observed dynamics minimizes the energy loss due to convective heat transfer by the gas flow. The control of the self-organization regime motivates the application of the plasma jet for precise and reproducible material processing.