Search Results

Now showing 1 - 9 of 9
  • Item
    Intracluster Coulombic decay following intense NIR ionization of clusters
    (Bristol : IOP Publ., 2015) Schütte, Bernd; Arbeiter, Mathias; Fennel, Thomas; Jabbari, Ghazal; Gokhberg, Kirill; Kuleff, Alexander I.; Vrakking, Marc J. J.; Rouzée, Arnaud
    We report on the observation of a novel intracluster Coulombic decay process following Rydberg atom formation in clusters ionized by intense near-infrared fields. A new decay channel emerges, in which a Rydberg atom relaxes to the ground state by transferring its excess energy to a weakly bound electron in the environment that is emitted from the cluster. We find evidence for this process in the electron spectra, where a peak close to the corresponding atomic ionization potential is observed. For Ar clusters, a decay time of 87 ps is measured, which is significantly longer than in previous time-resolved studies of interatomic Coulombic decay.
  • Item
    Correlated electronic decay following intense near-infrared ionization of clusters
    (Bristol : IOP Publ., 2015) Schütte, Bernd; Arbeiter, Mathias; Fennel, Thomas; Jabbari, Ghazal; Kuleff, Alexander I.; Vrakking, Marc J. J.; Rouzée, Arnaud
    We report on a novel correlated electronic decay process following extensive Rydberg atom formation in clusters ionized by intense near-infrared fields. A peak close to the atomic ionization potential is found in the electron kinetic energy spectrum. This new contribution is attributed to an energy transfer between two electrons, where one electron decays from a Rydberg state to the ground state and transfers its excess energy to a weakly bound cluster electron in the environment that can escape from the cluster. The process is a result of nanoplasma formation and is therefore expected to be important, whenever intense laser pulses interact with nanometer-sized particles.
  • Item
    Time-resolved investigation of transient charges in laser-produced nanoplasmas
    (Bristol : IOP Publ., 2015) Schütte, Bernd; Vrakking, Marc J. J.; Rouzée, Arnaud
    We report on the observation of a transient C4+ ion charge state in nanoplasmas produced by the interaction of intense near-infrared (NIR) laser pulses with CH4 clusters. The underlying dynamics are studied by pump-probe spectroscopy, which reveals that the ion charge states are lowered by electron-ion recombination. Furthermore, we present direct evidence that autoionization of multiply-excited ions plays an important role in expanding nanoplasmas, in contrast to models that neglect quantum phenomena.
  • Item
    Application of Matched-Filter Concepts to Unbiased Selection of Data in Pump-Probe Experiments with Free Electron Lasers
    (Basel : MDPI, 2017-06-16) Callegari, Carlo; Takanashi, Tsukasa; Fukuzawa, Hironobu; Motomura, Koji; Iablonskyi, Denys; Kumagai, Yoshiaki; Mondal, Subhendu; Tachibana, Tetsuya; Nagaya, Kiyonobu; Nishiyama, Toshiyuki; Matsunami, Kenji; Johnsson, Per; Piseri, Paolo; Sansone, Giuseppe; Dubrouil, Antoine; Reduzzi, Maurizio; Carpeggiani, Paolo; Vozzi, Caterina; Devetta, Michele; Faccialà, Davide; Calegari, Francesca; Castrovilli, Mattea; Coreno, Marcello; Alagia, Michele; Schütte, Bernd; Berrah, Nora; Plekan, Oksana; Finetti, Paola; Ferrari, Eugenio; Prince, Kevin; Ueda, Kiyoshi
    Pump-probe experiments are commonly used at Free Electron Lasers (FEL) to elucidate the femtosecond dynamics of atoms, molecules, clusters, liquids and solids. Maximizing the signal-to-noise ratio of the measurements is often a primary need of the experiment, and the aggregation of repeated, rapid, scans of the pump-probe delay is preferable to a single long-lasting scan. The limited availability of beamtime makes it impractical to repeat measurements indiscriminately, and the large, rapid flow of single-shot data that need to be processed and aggregated into a dataset, makes it difficult to assess the quality of a measurement in real time. In post-analysis it is then necessary to devise unbiased criteria to select or reject datasets, and to assign the weight with which they enter the analysis. One such case was the measurement of the lifetime of Intermolecular Coulombic Decay in the weakly-bound neon dimer. We report on the method we used to accomplish this goal for the pump-probe delay scans that constitute the core of the measurement; namely we report on the use of simple auto- and cross-correlation techniques based on the general concept of “matched filter”. We are able to unambiguously assess the signal-to-noise ratio (SNR) of each scan, which then becomes the weight with which a scan enters the average of multiple scans. We also observe a clear gap in the values of SNR, and we discard all the scans below a SNR of 0.45. We are able to generate an average delay scan profile, suitable for further analysis: in our previous work we used it for comparison with theory. Here we argue that the method is sufficiently simple and devoid of human action to be applicable not only in post-analysis, but also for the real-time assessment of the quality of a dataset.
  • Item
    Thin-disk laser-pumped OPCPA system delivering 4.4 TW few-cycle pulses
    (Washington, DC : Soc., 2020) Kretschmar, Martin; Tuemmler, Johannes; Schütte, Bernd; Hoffmann, Andreas; Senfftleben, Björn; Mero, Mark; Sauppe, Mario; Rupp, Daniela; Vrakking, Marc J.J.; Will, Ingo; Nagy, Tamas
    We present an optical parametric chirped pulse amplification (OPCPA) system delivering 4.4 TW pulses centered at 810 nm with a sub-9 fs duration and a carrier-envelope phase stability of 350 mrad. The OPCPA setup pumped by sub-10 ps pulses from two Yb:YAG thin-disk lasers at 100 Hz repetition rate is optimized for a high conversion-efficiency. The terawatt pulses of the OPCPA are utilized for generating intense extreme ultraviolet (XUV) pulses by high-order harmonic generation, achieving XUV pulse energies approaching the microjoule level. © 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement
  • Item
    THz streak camera performance for single-shot characterization of XUV pulses with complex temporal structures
    (Washington, DC : Soc., 2020) Oelze, Tim; Kulyk, Olena; Schütte, Bernd; Frühling, Ulrike; Klimešová, Eva; Jagielski, Bartholomäus; Dittrich, Laura; Drescher, Markus; Pan, Rui; Stojanovic, Nikola; Polovinkin, Vitaly; Khakurel, Krishna P.; Muehlig, Kerstin; Bermudez Macias, Ivette J.; Düsterer, Stefan; Faatz, Bart; Andreasson, Jakob; Wieland, Marek; Krikunova, Maria
    The THz-field-driven streak camera has proven to be a powerful diagnostic-technique that enables the shot-to-shot characterization of the duration and the arrival time jitter of free electron laser (FEL) pulses. Here we investigate the performance of three computational approaches capable to determine the duration of FEL pulses with complex temporal structures from single-shot measurements of up to three simultaneously recorded spectra. We use numerically simulated FEL pulses in order to validate the accuracy of the pulse length retrieval in average as well as in a single-shot mode. We discuss requirements for the THz field strength in order to achieve reliable results and compare our numerical study with the analysis of experimental data that were obtained at the FEL in Hamburg - FLASH. © 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement
  • Item
    Recombination dynamics of clusters in intense extreme-ultraviolet and near-infrared fields
    ([London] : IOP, 2015) Schütte, Bernd; Oelze, Tim; Krikunova, Maria; Arbeiter, Mathias; Fennel, Thomas; Vrakking, Marc J. J.; Rouzée, Arnaud
    We investigate electron-ion recombination processes in clusters exposed to intense extreme-ultraviolet (XUV) or near-infrared (NIR) pulses. Using the technique of reionization of excited atoms from recombination (REAR), recently introduced in Schütte et al (2014 Phys. Rev. Lett. 112 253401), a large population of excited atoms, which are formed in the nanoplasma during cluster expansion, is identified under both ionization conditions. For intense XUV ionization of clusters, we find that the significance of recombination increases for increasing cluster sizes. In addition, larger fragments are strongly affected by recombination as well, as shown for the case of dimers. We demonstrate that for mixed Ar–Xe clusters exposed to intense NIR pulses, excited atoms and ions are preferentially formed in the Xe core. As a result of electron-ion recombination, higher charge states of Xe are efficiently suppressed, leading to an overall reduced expansion speed of the cluster core in comparison to the shell.
  • Item
    Strong-field ionization of clusters using two-cycle pulses at 1.8 μm
    ([London] : Macmillan Publishers Limited, part of Springer Nature, 2016) Schütte, Bernd; Ye, Peng; Patchkovskii, Serguei; Austin, Dane R.; Brahms, Christian; Strüber, Christian; Witting, Tobias; Ivanov, Misha Yu; Tisch, John W. G.; Marangos, Jon P.
    The interaction of intense laser pulses with nanoscale particles leads to the production of high-energy electrons, ions, neutral atoms, neutrons and photons. Up to now, investigations have focused on near-infrared to X-ray laser pulses consisting of many optical cycles. Here we study strong-field ionization of rare-gas clusters (103 to 105 atoms) using two-cycle 1.8 μm laser pulses to access a new interaction regime in the limit where the electron dynamics are dominated by the laser field and the cluster atoms do not have time to move significantly. The emission of fast electrons with kinetic energies exceeding 3 keV is observed using laser pulses with a wavelength of 1.8 μm and an intensity of 1 × 1015 W/cm2, whereas only electrons below 500 eV are observed at 800 nm using a similar intensity and pulse duration. Fast electrons are preferentially emitted along the laser polarization direction, showing that they are driven out from the cluster by the laser field. In addition to direct electron emission, an electron rescattering plateau is observed. Scaling to even longer wavelengths is expected to result in a highly directional current of energetic electrons on a few-femtosecond timescale.
  • Item
    Correlated electronic decay in expanding clusters triggered by intense XUV pulses from a Free-Electron-Laser
    (London : Nature Publishing Group, 2017) Oelze, Tim; Schütte, Bernd; Müller, Maria; Müller, Jan P.; Wieland, Marek; Frühling, Ulrike; Drescher, Markus; Al-Shemmary, Alaa; Golz, Torsten; Stojanovic, Nikola; Krikunova, Maria
    Irradiation of nanoscale clusters and large molecules with intense laser pulses transforms them into highly-excited non- equilibrium states. The dynamics of intense laser-cluster interaction is encoded in electron kinetic energy spectra, which contain signatures of direct photoelectron emission as well as emission of thermalized nanoplasma electrons. In this work we report on a so far not observed spectrally narrow bound state signature in the electron kinetic energy spectra from mixed Xe core - Ar shell clusters ionized by intense extreme-ultraviolet (XUV) pulses from a free-electron-laser. This signature is attributed to the correlated electronic decay (CED) process, in which an excited atom relaxes and the excess energy is used to ionize the same or another excited atom or a nanoplasma electron. By applying the terahertz field streaking principle we demonstrate that CED-electrons are emitted at least a few picoseconds after the ionizing XUV pulse has ended. Following the recent finding of CED in clusters ionized by intense near-infrared laser pulses, our observation of CED in the XUV range suggests that this process is of general relevance for the relaxation dynamics in laser produced nanoplasmas.