Search Results

Now showing 1 - 5 of 5
  • Item
    Numerical and Experimental Demonstration of Intermodal Dispersive Wave Generation
    (Weinheim : Wiley VCH, 2021) Lüpken, Niklas M.; Timmerkamp, Maximilian; Scheibinger, Ramona; Schaarschmidt, Kay; Schmidt, Markus A.; Boller, Klaus‐J.; Fallnich, Carsten
    Evidence of intermodal dispersive wave generation mediated by intermodal cross-phase modulation (iXPM) between different transverse modes during supercontinuum generation in silicon nitride waveguides is presented. The formation of a higher-order soliton in one strong transverse mode leads to phase modulation of a second, weak transverse mode by iXPM. The phase modulation enables not only supercontinuum generation but also dispersive wave generation within the weak mode, that otherwise has insufficient power to facilitate dispersive wave formation. The nonlinear frequency conversion scheme presented here suggests phase-matching conditions beyond what is currently known, which can be exploited for extending the spectral bandwidth within supercontinuum generation.
  • Item
    Resonance-Induced Dispersion Tuning for Tailoring Nonsolitonic Radiation via Nanofilms in Exposed Core Fibers
    (Weinheim : Wiley VCH, 2020) Lühder, Tilman A.K.; Schaarschmidt, Kay; Goerke, Sebastian; Schartner, Erik P.; Ebendorff-Heidepriem, Heike; Schmidt, Markus A.
    Efficient supercontinuum generation demands for fine-tuning of the dispersion of the underlying waveguide. Resonances introduced into waveguide systems can substantially improve nonlinear dynamics in ultrafast supercontinuum generation via modal hybridization and formation of avoided crossings. Using the example of exposed core fibers functionalized by nanofilms with sub-nanometer precision both zero-dispersion and dispersive wave emission wavelengths are shifted by 227 and 300 nm, respectively, at tuning slopes higher than 20 nm/nm. The presented concept relies on dispersion management via induced resonances and can be straightforwardly extended to other deposition techniques and film geometries such as multilayers or 2D materials. It allows for the creation of unique dispersion landscapes, thus tailoring nonlinear dynamics and emission wavelengths and for making otherwise unsuitable waveguides relevant for ultrafast nonlinear photonics. © 2020 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
  • Item
    Ultrafast intermodal third harmonic generation in a liquid core step-index fiber filled with C2Cl4
    (Washington, DC : Soc., 2020) Schaarschmidt, Kay; Kobelke, Jens; Nolte, Stefan; Meyer, Tobias; Schmidt, Markus A.
    Third harmonic generation in a circular liquid core step-index fiber filled with a highly transparent inorganic solvent is demonstrated experimentally using ultrafast pump pulses of different durations in the telecom domain for the first time. Specifically we achieve intermodal phase matching to the HE13 higher order mode at the harmonic wavelength and found clear indications of a non-instantaneous molecular contribution to the total nonlinearity in the spectral broadening of the pump. Spectral power evolution and efficiency of the conversion process is studied for all pulse parameters, while we found the greatest photon yield for the longest pulses as well as an unexpected blue-shift of the third harmonic wavelength with increasing pump power. Our results provide the basis for future studies aiming at using this tunable fiber platform with a sophisticated nonlinear response in the context of harmonic generation. © 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement
  • Item
    Ultrafast intermodal third harmonic generation in a liquid core step-index fiber filled with C2Cl4: erratum
    (Washington, DC : Soc., 2021) Schaarschmidt, Kay; Kobelke, Jens; Nolte, Stefan; Meyer, Tobias; Schmidt, Markus A.
    We provide a correction due to an erroneous repetition rate of one of the laser systems (90 fs pulse duration) in our previously published paper [Opt. Express28, 25037 (2020)10.1364/OE.399771].
  • Item
    Understanding Nonlinear Pulse Propagation in Liquid Strand-Based Photonic Bandgap Fibers
    (Basel : MDPI, 2021) Qi, Xue; Schaarschmidt, Kay; Li, Guangrui; Junaid, Saher; Scheibinger, Ramona; Lühder, Tilman; Schmidt, Markus A.
    Ultrafast supercontinuum generation crucially depends on the dispersive properties of the underlying waveguide. This strong dependency allows for tailoring nonlinear frequency conversion and is particularly relevant in the context of waveguides that include geometry-induced resonances. Here, we experimentally uncovered the impact of the relative spectral distance between the pump and the bandgap edge on the supercontinuum generation and in particular on the dispersive wave formation on the example of a liquid strand-based photonic bandgap fiber. In contrast to its air-hole-based counterpart, a bandgap fiber shows a dispersion landscape that varies greatly with wavelength. Particularly due to the strong dispersion variation close to the bandgap edges, nanometer adjustments of the pump wavelength result in a dramatic change of the dispersive wave generation (wavelength and threshold). Phase-matching considerations confirm these observations, additionally revealing the relevance of third order dispersion for interband energy transfer. The present study provides additional insights into the nonlinear frequency conversion of resonance-enhanced waveguide systems which will be relevant for both understanding nonlinear processes as well as for tailoring the spectral output of nonlinear fiber sources.