Search Results

Now showing 1 - 6 of 6
Loading...
Thumbnail Image
Item

Acidity and the multiphase chemistry of atmospheric aqueous particles and clouds

2021, Tilgner, Andreas, Schaefer, Thomas, Alexander, Becky, Barth, Mary, Collett, Jeffrey L., Fahey, Kathleen M., Nenes, Athanasios, Pye, Havala O.T., Herrmann, Hartmut, McNeill, V. Faye

The acidity of aqueous atmospheric solutions is a key parameter driving both the partitioning of semi-volatile acidic and basic trace gases and their aqueous-phase chemistry. In addition, the acidity of atmospheric aqueous phases, e.g., deliquesced aerosol particles, cloud, and fog droplets, is also dictated by aqueous-phase chemistry. These feedbacks between acidity and chemistry have crucial implications for the tropospheric lifetime of air pollutants, atmospheric composition, deposition to terrestrial and oceanic ecosystems, visibility, climate, and human health. Atmospheric research has made substantial progress in understanding feedbacks between acidity and multiphase chemistry during recent decades. This paper reviews the current state of knowledge on these feedbacks with a focus on aerosol and cloud systems, which involve both inorganic and organic aqueous-phase chemistry. Here, we describe the impacts of acidity on the phase partitioning of acidic and basic gases and buffering phenomena. Next, we review feedbacks of different acidity regimes on key chemical reaction mechanisms and kinetics, as well as uncertainties and chemical subsystems with incomplete information. Finally, we discuss atmospheric implications and highlight the need for future investigations, particularly with respect to reducing emissions of key acid precursors in a changing world, and the need for advancements in field and laboratory measurements and model tools.

Loading...
Thumbnail Image
Item

Tropospheric aqueous-phase chemistry: kinetics, mechanisms, and its coupling to a changing gas phase

2015, Herrmann, Hartmut, Schaefer, Thomas, Tilgner, Andreas, Styler, Sarah A., Weller, Christian, Teich, Monique, Otto, Tobias

[no abstract available]

Loading...
Thumbnail Image
Item

pH- and Temperature-Dependent Kinetics of the Oxidation Reactions of OH with Succinic and Pimelic Acid in Aqueous Solution

2020, Schaefer, Thomas, Wen, Liang, Estelmann, Arne, Maak, Joely, Herrmann, Hartmut

Rate constants for the aqueous-phase reactions of the hydroxyl radical with the dicarboxylic acids, succinic acid and pimelic acid were determined using the relative rate technique over the temperature range 287 K ≤ T ≤ 318 K and at pH = 2.0, 4.6 or 4.9 and 8.0. OH radicals were generated by H2O2 laser flash photolysis while thiocyanate was used as a competitor. The pH values were adjusted to obtain the different speciation of the dicarboxylic acids. The following Arrhenius expressions were determined (in units of L mol-1 s-1): succinic acid, k(T, AH2) (2.1 x 0.1) ± 1010 exp[(-1530 x 250 K)/T], k(T, AH-) (1.8 x 0.1) ± 1010 exp[(-1070 x 370 K)/T], k(T, A2-) (2.9 x 0.2) ± 1011 exp[(-1830 x 350 K)/T] and pimelic acid, k(T, AH2) (7.3 x 0.2) ± 1010 exp[(-1040 x 140 K)/T], k(T, AH-) (1.8 x 0.1) ± 1011 exp[(-1200 x 240 K)/T], k(T, A2-) (1.4 x 0.1) ± 1012 exp[(-1830 x 110 K)/T]. A general OH radical reactivity trend for dicarboxylic acids was found as k(AH2) < k(AH-) < k(A2-). By using the pH and temperature dependent rate constants, source and sinking processes in the tropospheric aqueous phase can be described precisely. © 2020 by the authors.

Loading...
Thumbnail Image
Item

The role of Antarctic overwintering teams and their significance for German polar research

2022, Franke, Steven, Eckstaller, Alfons, Heitland, Tim, Schaefer, Thomas, Asseng, Jölund

Germany has been operating permanently crewed research stations in Antarctica for more than 45 years. The opening of the Georg Forster Station (1976) and Georg von Neumayer Station (1981) initiated a period of continuous environmental monitoring that allowed both the former East Germany and West Germany to become contracting parties in, and achieve consultative status with, the framework of the Antarctic Treaty. This marked a milestone in German polar research. Continuous research at the Neumayer Station III, its two predecessors, and the now-dismantled former German Democratic Republic (GDR) Georg Forster Station is undertaken by teams of so-called "overwinterers", presently with nine members, who stay at the base for longer than an entire Antarctic winter. Their long-Term stay in Antarctica is defined by isolation, separation from civilization, routine work to sustain long-Term scientific observations, and unique personal experiences. This article is dedicated to them and outlines their part and role in the German Antarctic research landscape.

Loading...
Thumbnail Image
Item

The acidity of atmospheric particles and clouds

2020, Pye, Havala O.T., Nenes, Athanasios, Alexander, Becky, Ault, Andrew P., Barth, Mary C., Clegg, Simon L., Collett Jr, Jeffrey L., Fahey, Kathleen M., Hennigan, Christopher J., Herrmann, Hartmut, Kanakidou, Maria, Kelly, James T., Ku, I-Ting, McNeill, V. Faye, Riemer, Nicole, Schaefer, Thomas, Shi, Guoliang, Tilgner, Andreas, Walker, John T., Wang, Tao, Weber, Rodney, Xing, Jia, Zaveri, Rahul A., Zuend, Andreas

Acidity, defined as pH, is a central component of aqueous chemistry. In the atmosphere, the acidity of condensed phases (aerosol particles, cloud water, and fog droplets) governs the phase partitioning of semivolatile gases such as HNO3, NH3, HCl, and organic acids and bases as well as chemical reaction rates. It has implications for the atmospheric lifetime of pollutants, deposition, and human health. Despite its fundamental role in atmospheric processes, only recently has this field seen a growth in the number of studies on particle acidity. Even with this growth, many fine-particle pH estimates must be based on thermodynamic model calculations since no operational techniques exist for direct measurements. Current information indicates acidic fine particles are ubiquitous, but observationally constrained pH estimates are limited in spatial and temporal coverage. Clouds and fogs are also generally acidic, but to a lesser degree than particles, and have a range of pH that is quite sensitive to anthropogenic emissions of sulfur and nitrogen oxides, as well as ambient ammonia. Historical measurements indicate that cloud and fog droplet pH has changed in recent decades in response to controls on anthropogenic emissions, while the limited trend data for aerosol particles indicate acidity may be relatively constant due to the semivolatile nature of the key acids and bases and buffering in particles. This paper reviews and synthesizes the current state of knowledge on the acidity of atmospheric condensed phases, specifically particles and cloud droplets. It includes recommendations for estimating acidity and pH, standard nomenclature, a synthesis of current pH estimates based on observations, and new model calculations on the local and global scale. © 2020 Author(s).

Loading...
Thumbnail Image
Item

Humic Substance Photosensitized Degradation of Phthalate Esters Characterized by 2H and 13C Isotope Fractionation

2023, Min, Ning, Yao, Jun, Li, Hao, Chen, Zhihui, Pang, Wancheng, Zhu, Junjie, Kümmel, Steffen, Schaefer, Thomas, Herrmann, Hartmut, Richnow, Hans Hermann

The photosensitized transformation of organic chemicals is an important degradation mechanism in natural surface waters, aerosols, and water films on surfaces. Dissolved organic matter including humic-like substances (HS), acting as photosensitizers that participate in electron transfer reactions, can generate a variety of reactive species, such as OH radicals and excited triplet-state HS (3HS*), which promote the degradation of organic compounds. We use phthalate esters, which are important contaminants found in wastewaters, landfills, soils, rivers, lakes, groundwaters, and mine tailings. We use phthalate esters as probes to study the reactivity of HS irradiated with artificial sunlight. Phthalate esters with different side-chain lengths were used as probes for elucidation of reaction mechanisms using 2H and 13C isotope fractionation. Reference experiments with the artificial photosensitizers 4,5,6,7-tetrachloro-2′,4′,5′,7′-tetraiodofluorescein (Rose Bengal), 3-methoxy-acetophenone (3-MAP), and 4-methoxybenzaldehyde (4-MBA) yielded characteristic fractionation factors (−4 ± 1, −4 ± 2, and −4 ± 1‰ for 2H; 0.7 ± 0.2, 1.0 ± 0.4, and 0.8 ± 0.2‰ for 13C), allowing interpretation of reaction mechanisms of humic substances with phthalate esters. The correlation of 2H and 13C fractions can be used diagnostically to determine photosensitized reactions in the environment and to differentiate among biodegradation, hydrolysis, and photosensitized HS reaction.