Search Results

Now showing 1 - 6 of 6
  • Item
    Modeling forest plantations for carbon uptake with the LPJmL dynamic global vegetation model
    (Göttingen : Copernicus Publ., 2019) Braakhekke, Maarten C.; Doelman, Jonathan C.; Baas, Peter; Müller, Christoph; Schaphoff, Sibyll; Stehfest, Elke; van Vuuren, Detlef P.
    We present an extension of the dynamic global vegetation model, Lund-Potsdam-Jena Managed Land (LPJmL), to simulate planted forests intended for carbon (C) sequestration. We implemented three functional types to simulate plantation trees in temperate, tropical, and boreal climates. The parameters of these functional types were optimized to fit target growth curves (TGCs). These curves represent the evolution of stemwood C over time in typical productive plantations and were derived by combining field observations and LPJmL estimates for equivalent natural forests. While the calibrated model underestimates stemwood C growth rates compared to the TGCs, it represents substantial improvement over using natural forests to represent afforestation. Based on a simulation experiment in which we compared global natural forest versus global forest plantation, we found that forest plantations allow for much larger C uptake rates on the timescale of 100 years, with a maximum difference of a factor of 1.9, around 54 years. In subsequent simulations for an ambitious but realistic scenario in which 650Mha (14% of global managed land, 4.5% of global land surface) are converted to forest over 85 years, we found that natural forests take up 37PgC versus 48PgC for forest plantations. Comparing these results to estimations of C sequestration required to achieve the 2°C climate target, we conclude that afforestation can offer a substantial contribution to climate mitigation. Full evaluation of afforestation as a climate change mitigation strategy requires an integrated assessment which considers all relevant aspects, including costs, biodiversity, and trade-offs with other land-use types. Our extended version of LPJmL can contribute to such an assessment by providing improved estimates of C uptake rates by forest plantations. © 2019 American Institute of Physics Inc.. All rights reserved.
  • Item
    Global cotton production under climate change – Implications for yield and water consumption
    (Munich : EGU, 2021) Jans, Yvonne; von Bloh, Werner; Schaphoff, Sibyll; Müller, Christoph
    Being an extensively produced natural fiber on earth, cotton is of importance for economies. Although the plant is broadly adapted to varying environments, the growth of and irrigation water demand on cotton may be challenged by future climate change. To study the impacts of climate change on cotton productivity in different regions across the world and the irrigation water requirements related to it, we use the process-based, spatially detailed biosphere and hydrology model LPJmL (Lund Potsdam Jena managed land). We find our modeled cotton yield levels in good agreement with reported values and simulated water consumption of cotton production similar to published estimates. Following the Inter-Sectoral Impact Model Intercomparison Project (ISIMIP) protocol, we employ an ensemble of five general circulation models under four representative concentration pathways (RCPs) for the 2011 2099 period to simulate future cotton yields. We find that irrigated cotton production does not suffer from climate change if CO2 effects are considered, whereas rainfed production is more sensitive to varying climate conditions. Considering the overall effect of a changing climate and CO2 fertilization, cotton production on current cropland steadily increases for most of the RCPs. Starting from _ 65 million tonnes in 2010, cotton production for RCP4.5 and RCP6.0 equates to 83 and 92 million tonnes at the end of the century, respectively. Under RCP8.5, simulated global cotton production rises by more than 50% by 2099. Taking only climate change into account, projected cotton production considerably shrinks in most scenarios, by up to one-Third or 43 million tonnes under RCP8.5. The simulation of future virtual water content (VWC) of cotton grown under elevated CO2 results for all scenarios in less VWC compared to ambient CO2 conditions. Under RCP6.0 and RCP8.5, VWC is notably decreased by more than 2000m3 t1 in areas where cotton is produced under purely rainfed conditions. By 2040, the average global VWC for cotton declines in all scenarios from currently 3300 to 3000m3 t1, and reduction continues by up to 30% in 2100 under RCP8.5. While the VWC decreases by the CO2 effect, elevated temperature acts in the opposite direction. Ignoring beneficial CO2 effects, global VWC of cotton would increase for all RCPs except RCP2.6, reaching more than 5000m3 t1 by the end of the simulation period under RCP8.5. Given the economic relevance of cotton production, climate change poses an additional stress and deserves special attention. Changes in VWC and water demands for cotton production are of special importance, as cotton production is known for its intense water consumption. The implications of climate impacts on cotton production on the one hand and the impact of cotton production on water resources on the other hand illustrate the need to assess how future climate change may affect cotton production and its resource requirements. Our results should be regarded as optimistic, because of high uncertainty with respect to CO2 fertilization and the lack of implementing processes of boll abscission under heat stress. Still, the inclusion of cotton in LPJmL allows for various large-scale studies to assess impacts of climate change on hydrological factors and the implications for agricultural production and carbon sequestration. © 2021 BMJ Publishing Group. All rights reserved.
  • Item
    A multi-model analysis of risk of ecosystem shifts under climate change
    (Bristol : IOP Publishing, 2013) Warszawski, Lila; Friend, Andrew; Ostberg, Sebastian; Frieler, Katja; Lucht, Wolfgang; Schaphoff, Sibyll; Beerling, David; Cadule, Patricia; Ciais, Philippe; Clark, Douglas B.; Kahana, Ron; Ito, Akihiko; Keribin, Rozenn; Kleidon, Axel; Lomas, Mark; Nishina, Kazuya; Pavlick, Ryan; Rademacher, Tim Tito; Buechner, Matthias; Piontek, Franziska; Schewe, Jacob; Serdeczny, Olivia; Schellnhuber, Hans Joachim
    Climate change may pose a high risk of change to Earth's ecosystems: shifting climatic boundaries may induce changes in the biogeochemical functioning and structures of ecosystems that render it difficult for endemic plant and animal species to survive in their current habitats. Here we aggregate changes in the biogeochemical ecosystem state as a proxy for the risk of these shifts at different levels of global warming. Estimates are based on simulations from seven global vegetation models (GVMs) driven by future climate scenarios, allowing for a quantification of the related uncertainties. 5–19% of the naturally vegetated land surface is projected to be at risk of severe ecosystem change at 2 ° C of global warming (ΔGMT) above 1980–2010 levels. However, there is limited agreement across the models about which geographical regions face the highest risk of change. The extent of regions at risk of severe ecosystem change is projected to rise with ΔGMT, approximately doubling between ΔGMT = 2 and 3 ° C, and reaching a median value of 35% of the naturally vegetated land surface for ΔGMT = 4 °C. The regions projected to face the highest risk of severe ecosystem changes above ΔGMT = 4 °C or earlier include the tundra and shrublands of the Tibetan Plateau, grasslands of eastern India, the boreal forests of northern Canada and Russia, the savanna region in the Horn of Africa, and the Amazon rainforest.
  • Item
    Benchmarking carbon fluxes of the ISIMIP2a biome models
    (Bristol : IOP Publishing, 2017) Chang, Jinfeng; Ciais, Philippe; Wang, Xuhui; Piao, Shilong; Asrar, Ghassem; Betts, Richard; Chevallier, Frédéric; Dury, Marie; François, Louis; Frieler, Katja; Ros, Anselmo García Cantú; Henrot, Alexandra-Jane; Hickler, Thomas; Ito, Akihiko; Morfopoulos, Catherine; Munhoven, Guy; Nishina, Kazuya; Ostberg, Sebastian; Pan, Shufen; Peng, Shushi; Rafique, Rashid; Reyer, Christopher; Rödenbeck, Christian; Schaphoff, Sibyll; Steinkamp, Jörg; Tian, Hanqin; Viovy, Nicolas; Yang, Jia; Zeng, Ning; Zhao, Fang
    The purpose of this study is to evaluate the eight ISIMIP2a biome models against independent estimates of long-term net carbon fluxes (i.e. Net Biome Productivity, NBP) over terrestrial ecosystems for the recent four decades (1971–2010). We evaluate modeled global NBP against 1) the updated global residual land sink (RLS) plus land use emissions (E LUC) from the Global Carbon Project (GCP), presented as R + L in this study by Le Quéré et al (2015), and 2) the land CO2 fluxes from two atmospheric inversion systems: Jena CarboScope s81_v3.8 and CAMS v15r2, referred to as F Jena and F CAMS respectively. The model ensemble-mean NBP (that includes seven models with land-use change) is higher than but within the uncertainty of R + L, while the simulated positive NBP trend over the last 30 yr is lower than that from R + L and from the two inversion systems. ISIMIP2a biome models well capture the interannual variation of global net terrestrial ecosystem carbon fluxes. Tropical NBP represents 31 ± 17% of global total NBP during the past decades, and the year-to-year variation of tropical NBP contributes most of the interannual variation of global NBP. According to the models, increasing Net Primary Productivity (NPP) was the main cause for the generally increasing NBP. Significant global NBP anomalies from the long-term mean between the two phases of El Niño Southern Oscillation (ENSO) events are simulated by all models (p < 0.05), which is consistent with the R + L estimate (p = 0.06), also mainly attributed to NPP anomalies, rather than to changes in heterotrophic respiration (Rh). The global NPP and NBP anomalies during ENSO events are dominated by their anomalies in tropical regions impacted by tropical climate variability. Multiple regressions between R + L, F Jena and F CAMS interannual variations and tropical climate variations reveal a significant negative response of global net terrestrial ecosystem carbon fluxes to tropical mean annual temperature variation, and a non-significant response to tropical annual precipitation variation. According to the models, tropical precipitation is a more important driver, suggesting that some models do not capture the roles of precipitation and temperature changes adequately.
  • Item
    Three centuries of dual pressure from land use and climate change on the biosphere
    (Bristol : IOP Publishing, 2015) Ostberg, Sebastian; Schaphoff, Sibyll; Lucht, Wolfgang; Gerten, Dieter
    Human land use and anthropogenic climate change (CC) are placing mounting pressure on natural ecosystems worldwide, with impacts on biodiversity, water resources, nutrient and carbon cycles. Here, we present a quantitative macro-scale comparative analysis of the separate and joint dual impacts of land use and land cover change (LULCC) and CC on the terrestrial biosphere during the last ca. 300 years, based on simulations with a dynamic global vegetation model and an aggregated metric of simultaneous biogeochemical, hydrological and vegetation-structural shifts. We find that by the beginning of the 21st century LULCC and CC have jointly caused major shifts on more than 90% of all areas now cultivated, corresponding to 26% of the land area. CC has exposed another 26% of natural ecosystems to moderate or major shifts. Within three centuries, the impact of LULCC on landscapes has increased 13-fold. Within just one century, CC effects have caught up with LULCC effects.
  • Item
    First process-based simulations of climate change impacts on global tea production indicate large effects in the World’s major producer countries
    (Bristol : IOP Publ., 2020) Beringer, Tim; Kulak, Michal; Müller, Christoph; Schaphoff, Sibyll; Jans, Yvonne
    Modeling of climate change impacts have mainly been focused on a small number of annual staple crops that provide most of the world's calories. Crop models typically do not represent perennial crops despite their high economic, nutritional, or cultural value. Here we assess climate change impacts on global tea production, chosen because of its high importance in culture and livelihoods of people around the world. We extended the dynamic global vegetation model with managed land, LPJmL4, global crop model to simulate the cultivation of tea plants. Simulated tea yields were validated and found in good agreement with historical observations as well as experiments on the effects of increasing CO2 concentrations. We then projected yields into the future under a range of climate scenarios from the Inter-Sectoral Impact Model Intercomparison Project. Under current irrigation levels and lowest climate change scenarios, tea yields are expected to decrease in major producing countries. In most climate scenarios, we project that tea yields are set to increase in China, India, and Vietnam. However, yield losses are expected to affect Kenya, Indonesia, and Sri Lanka. If abundant water supply and full irrigation is assumed for all tea cultivation areas, yields are projected to increase in all regions.