Search Results

Now showing 1 - 2 of 2
  • Item
    Magnetically induced reorientation of martensite variants in constrained epitaxial Ni-Mn-Ga films grown on MgO(001)
    (Milton Park : Taylor & Francis, 2008) Thomas, M.; Heczko, O.; Buschbeck, J.; Rößler, U.K.; McCord, J.; Scheerbaum, N.; Schultz, L.; Fähler, S.
    Magnetically induced reorientation (MIR) is observed in epitaxial orthorhombic Ni-Mn-Ga films. Ni-Mn-Ga films have been grown epitaxially on heated MgO(001) substrates in the cubic austenite state. The unit cell is rotated by 45° relative to the MgO cell. The growth, structure texture and anisotropic magnetic properties of these films are described. The crystallographic analysis of the martensitic transition reveals variant selection dominated by the substrate constraint. The austenite state has low magnetocrystalline anisotropy. In the martensitic state, the magnetization curves reveal an orthorhombic symmetry having three magnetically non-equivalent axes. The existence of MIR is deduced from the typical hysteresis within the first quadrant in magnetization curves and independently by texture measurement without and in the presence of a magnetic field probing micro structural changes. An analytical model is presented, which describes MIR in films with constrained overall extension by the additional degree of freedom of an orthorhombic structure compared to the tetragonal structure used in the standard model.
  • Item
    Magnetic field-induced twin boundary motion in polycrystalline Ni-Mn-Ga fibres
    (Milton Park : Taylor & Francis, 2008) Scheerbaum, N.; Heczko, O.; Liu, J.; Hinz, D.; Schultz, L.; Gutfleisch, O.
    Magnetic field-induced twin boundary motion leading to large magnetic field-induced strain of ~1.0% was established in polycrystalline Ni50.9Mn27.1Ga22.0 (at.%) fibres at room temperature (~60–100 μm in diameter and ~3 mm in length). The fibres' grains are as large as the fibre diameter and of random orientation. At room temperature, a ferromagnetic 5M martensite is found. Magnetic field-induced twin boundary motion was indicated by magnetic measurements and validated by electron backscatter diffraction (EBSD). The application of a magnetic field shifts the equilibrium temperature of martensite and austenite by ~0.4 K T−1, which agrees with calculations using the Clapeyron–Clausius approach.