Search Results

Now showing 1 - 2 of 2
  • Item
    High-Sensitivity Rheo-NMR Spectroscopy for Protein Studies
    (Columbus, Ohio : American Chemical Society, 2017) Morimoto, Daichi; Walinda, Erik; Iwakawa, Naoto; Nishizawa, Mayu; Kawata, Yasushi; Yamamoto, Akihiko; Shirakawa, Masahiro; Scheler, Ulrich; Sugase, Kenji
    Shear stress can induce structural deformation of proteins, which might result in aggregate formation. Rheo-NMR spectroscopy has the potential to monitor structural changes in proteins under shear stress at the atomic level; however, existing Rheo-NMR methodologies have insufficient sensitivity to probe protein structure and dynamics. Here we present a simple and versatile approach to Rheo-NMR, which maximizes sensitivity by using a spectrometer equipped with a cryogenic probe. As a result, the sensitivity of the instrument ranks highest among the Rheo-NMR spectrometers reported so far. We demonstrate that the newly developed Rheo-NMR instrument can acquire high-quality relaxation data for a protein under shear stress and can trace structural changes in a protein during fibril formation in real time. The described approach will facilitate rheological studies on protein structural deformation, thereby aiding a physical understanding of shear-induced amyloid fibril formation.
  • Item
    An NMR Study of Biomimetic Fluorapatite - Gelatine Mesocrystals
    ([London] : Macmillan Publishers Limited, part of Springer Nature, 2015) Vyalikh, Anastasia; Simon, Paul; Rosseeva, Elena; Buder, Jana; Scheler, Ulrich; Kniep, Rüdiger
    The mesocrystal system fluoroapatite—gelatine grown by double-diffusion is characterized by hierarchical composite structure on a mesoscale. In the present work we apply solid state NMR to characterize its structure on the molecular level and provide a link between the structural organisation on the mesoscale and atomistic computer simulations. Thus, we find that the individual nanocrystals are composed of crystalline fluorapatite domains covered by a thin boundary apatite-like layer. The latter is in contact with an amorphous layer, which fills the interparticle space. The amorphous layer is comprised of the organic matrix impregnated by isolated phosphate groups, Ca3F motifs and water molecules. Our NMR data provide clear evidence for the existence of precursor complexes in the gelatine phase, which were not involved in the formation of apatite crystals, proving hence theoretical predictions on the structural pre-treatment of gelatine by ion impregnation. The interfacial interactions, which may be described as the glue holding the composite materials together, comprise hydrogen bond interactions with the apatite PO43− groups. The reported results are in a good agreement with molecular dynamics simulations, which address the mechanisms of a growth control by collagen fibers and with experimental observations of an amorphous cover layer in biominerals.