Search Results

Now showing 1 - 3 of 3
  • Item
    Satellite retrievals of dust aerosol over the Red Sea and the Persian Gulf (2005-2015)
    (Katlenburg-Lindau : EGU, 2017) Banks, Jamie R.; Brindley, Helen E.; Stenchikov, Georgiy; Schepanski, Kerstin
    The inter-annual variability of the dust aerosol presence over the Red Sea and the Persian Gulf is analysed over the period 2005-2015. Particular attention is paid to the variation in loading across the Red Sea, which has previously been shown to have a strong, seasonally dependent latitudinal gradient. Over the 11 years considered, the July mean 630 nm aerosol optical depth (AOD) derived from the Spinning Enhanced Visible and InfraRed Imager (SEVIRI) varies between 0.48 and 1.45 in the southern half of the Red Sea. In the north, the equivalent variation is between 0.22 and 0.66. The temporal and spatial pattern of variability captured by SEVIRI is also seen in AOD retrievals from the MODerate Imaging Spectroradiometer (MODIS), but there is a systematic offset between the two records. Comparisons of both sets of retrievals with ship-and land-based AERONET measurements show a high degree of correlation with biases of <0.08. However, these comparisons typically only sample relatively low aerosol loadings. When both records are stratified by AOD retrievals from the Multi-angle Imaging SpectroRadiometer (MISR), opposing behaviour is revealed at high MISR AODs (>1), with offsets of C0.19 for MODIS and 0.06 for SEVIRI. Similar behaviour is also seen over the Persian Gulf. Analysis of the scattering angles at which retrievals from the SEVIRI and MODIS measurements are typically performed in these regions suggests that assumptions concerning particle sphericity may be responsible for the differences seen.
  • Item
    Profiling of aerosol microphysical properties at several EARLINET/AERONET sites during the July 2012 ChArMEx/EMEP campaign
    (München : European Geopyhsical Union, 2016) Granados-Muñoz, María José; Navas-Guzmán, Francisco; Guerrero-Rascado, Juan Luis; Bravo-Aranda, Juan Antonio; Pereira, Sergio Nepomuceno; Basart, Sara; Baldasano, José María; Belegante, Livio; Chaikovsky, Anatoli; Comerón, Adolfo; D'Amico, Giuseppe; Dubovik, Oleg; Ilic, Luka; Kokkalis, Panos; Muñoz-Porcar, Constantino; Nickovic, Slobodan; Nicolae, Doina; Facchini, Maria Cristina; Olmo, Francisco José; Papayannis, Alexander; Pappalardo, Gelsomina; Rodríguez, Alejandro; Schepanski, Kerstin; Sicard, Michaël; Vukovic, Ana; Wandinger, Ulla; Dulac, François; Alados-Arboledas, Lucas
    The simultaneous analysis of aerosol microphysical properties profiles at different European stations is made in the framework of the ChArMEx/EMEP 2012 field campaign (9–11 July 2012). During and in support of this campaign, five lidar ground-based stations (Athens, Barcelona, Bucharest, Évora, and Granada) performed 72 h of continuous lidar measurements and collocated and coincident sun-photometer measurements. Therefore it was possible to retrieve volume concentration profiles with the Lidar Radiometer Inversion Code (LIRIC). Results indicated the presence of a mineral dust plume affecting the western Mediterranean region (mainly the Granada station), whereas a different aerosol plume was observed over the Balkans area. LIRIC profiles showed a predominance of coarse spheroid particles above Granada, as expected for mineral dust, and an aerosol plume composed mainly of fine and coarse spherical particles above Athens and Bucharest. Due to the exceptional characteristics of the ChArMEx database, the analysis of the microphysical properties profiles' temporal evolution was also possible. An in-depth analysis was performed mainly at the Granada station because of the availability of continuous lidar measurements and frequent AERONET inversion retrievals. The analysis at Granada was of special interest since the station was affected by mineral dust during the complete analyzed period. LIRIC was found to be a very useful tool for performing continuous monitoring of mineral dust, allowing for the analysis of the dynamics of the dust event in the vertical and temporal coordinates. Results obtained here illustrate the importance of having collocated and simultaneous advanced lidar and sun-photometer measurements in order to characterize the aerosol microphysical properties in both the vertical and temporal coordinates at a regional scale. In addition, this study revealed that the use of the depolarization information as input in LIRIC in the stations of Bucharest, Évora, and Granada was crucial for the characterization of the aerosol types and their distribution in the vertical column, whereas in stations lacking depolarization lidar channels, ancillary information was needed. Results obtained were also used for the validation of different mineral dust models. In general, the models better forecast the vertical distribution of the mineral dust than the column-integrated mass concentration, which was underestimated in most of the cases.
  • Item
    North African mineral dust sources: New insights from a combined analysis based on 3D dust aerosol distributions, surface winds and ancillary soil parameters
    (Katlenburg-Lindau : EGU, 2020) Vandenbussche, Sophie; Callewaert, Sieglinde; Schepanski, Kerstin; De Mazière, Martine
    Mineral dust aerosol is a key player in the climate system. Determining dust sources and the spatio-temporal variability of dust emission fluxes is essential for estimating the impact of dust on the atmospheric radiation budget, cloud and precipitation formation processes, the bio-productivity and, ultimately, the carbon cycle. Although much effort has been put into determining dust sources from satellite observations, geo-locating active dust sources is still challenging and uncertainties in space and time are evident. One major source of uncertainty is the lack of clear differentiation between near-source dust aerosol and transported dust aerosol. In order to reduce this uncertainty, we use 3D information on the distribution of dust aerosol suspended in the atmosphere calculated from spectral measurements obtained by the Infrared Atmospheric Sounding Interferometer (IASI) by using the Mineral Aerosols Profiling from Infrared Radiance (MAPIR) algorithm. In addition to standard dust products from satellite observations, which provide 2D information on the horizontal distribution of dust, MAPIR allows for the retrieval of additional information on the vertical distribution of dust plumes. This ultimately enables us to separate between near-source and transported dust plumes. Combined with information on near-surface wind speed and surface properties, low-altitude dust plumes can be assigned to dust emission events and low-altitude transport regimes can be excluded. Consequently, this technique will reduce the uncertainty in automatically geo-locating active dust sources. The findings of our study illustrate the spatio-temporal distribution of North African dust sources based on 9 years of data, allowing for the observation of a full seasonal cycle of dust emissions, differentiating morning and afternoon/evening emissions and providing a first glance at long-term changes. In addition, we compare the results of this new method to the results from Schepanski et al. (2012), who manually identified dust sources from Spinning Enhanced Visible and InfraRed Imager (SEVIRI) red-green-blue (RGB) images. The comparison illustrates that each method has its strengths and weaknesses that must be taken into account when using the results. This study is of particular importance for understanding future environmental changes due to a changing climate. © Author(s) 2020