Search Results

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Item

A Photoclick-Based High-Throughput Screening for the Directed Evolution of Decarboxylase OleT

2021, Markel, Ulrich, Lanvers, Pia, Sauer, Daniel F., Wittwer, Malte, Dhoke, Gaurao V., Davari, Mehdi D., Schiffels, Johannes, Schwaneberg, Ulrich

Enzymatic oxidative decarboxylation is an up-and-coming reaction yet lacking efficient screening methods for the directed evolution of decarboxylases. Here, we describe a simple photoclick assay for the detection of decarboxylation products and its application in a proof-of-principle directed evolution study on the decarboxylase OleT. The assay was compatible with two frequently used OleT operation modes (directly using hydrogen peroxide as the enzyme's co-substrate or using a reductase partner) and the screening of saturation mutagenesis libraries identified two enzyme variants shifting the enzyme's substrate preference from long chain fatty acids toward styrene derivatives. Overall, this photoclick assay holds promise to speed-up the directed evolution of OleT and other decarboxylases. © 2020 The Authors. Published by Wiley-VCH GmbH

Loading...
Thumbnail Image
Item

Engineered living hydrogels for robust biocatalysis in pure organic solvents

2022, Gao, Liang, Feng, Lilin, Sauer, Daniel F., Wittwer, Malte, Hu, Yong, Schiffels, Johannes, Li, Xin

Engineered living hydrogels that can protect cells from harsh environments have achieved preliminary successes in biomedicine and environmental remediation. However, their biocatalytic applications in pure organic solvents have not been explored. Here, living hydrogels were engineered by integrating genetically modified Escherichia coli cells into alginate hydrogels for robust biocatalysis in pure organic solvents. The biocompatible hydrogels could not only support cell growth and diminish cell escape but could also act as protective matrices to improve organic solvent tolerance, thereby prolonging catalytic activity of whole-cell biocatalysts. Moreover, the influence of hydrogel microenvironments on biocatalytic efficiency was thoroughly investigated. Importantly, the versatility of engineered living hydrogels paves the way to achieve robust biocatalytic efficiency in a variety of pure organic co-solvents. Overall, we are able to engineer living hydrogels for regio-selective synthesis in pure organic solvents, which may be particularly useful for the innovation of living hydrogels in biocatalysis.