Search Results

Now showing 1 - 2 of 2
  • Item
    Improving Deep Learning-based Plant Disease Classification with Attention Mechanism
    (Berlin ; Heidelberg : Springer, 2022) Alirezazadeh, Pendar; Schirrmann, Michael; Stolzenburg, Frieder
    In recent years, deep learning-based plant disease classification has been widely developed. However, it is challenging to collect sufficient annotated image data to effectively train deep learning models for plant disease recognition. The attention mechanism in deep learning assists the model to focus on the informative data segments and extract the discriminative features of inputs to enhance training performance. This paper investigates the Convolutional Block Attention Module (CBAM) to improve classification with CNNs, which is a lightweight attention module that can be plugged into any CNN architecture with negligible overhead. Specifically, CBAM is applied to the output feature map of CNNs to highlight important local regions and extract more discriminative features. Well-known CNN models (i.e. EfficientNetB0, MobileNetV2, ResNet50, InceptionV3, and VGG19) were applied to do transfer learning for plant disease classification and then fine-tuned by a publicly available plant disease dataset of foliar diseases in pear trees called DiaMOS Plant. Amongst others, this dataset contains 3006 images of leaves affected by different stress symptoms. Among the tested CNNs, EfficientNetB0 has shown the best performance. EfficientNetB0+CBAM has outperformed EfficientNetB0 and obtained 86.89% classification accuracy. Experimental results show the effectiveness of the attention mechanism to improve the recognition accuracy of pre-trained CNNs when there are few training data.
  • Item
    Deep Learning Object Detection for Image Analysis of Cherry Fruit Fly (Rhagoletis cerasi L.) on Yellow Sticky Traps
    (Berlin ; Heidelberg : Springer, 2022) Salamut, Christian; Kohnert, Iris; Landwehr, Niels; Pflanz, Michael; Schirrmann, Michael; Zare, Mohammad
    Insect populations appear with a high spatial, temporal and type-specific diversity in orchards. One of the many monitoring tools for pest management is the manual assessment of sticky traps. However, this type of assessment is laborious and time-consuming so that only a few locations can be controlled in an orchard. The aim of this study is to test state-of-the art object detection algorithms from deep learning to automatically detect cherry fruit flies (Rhagoletis cerasi), a common insect pest in cherry plantations, within images from yellow sticky traps. An image annotation database was built with images taken from yellow sticky traps with more than 1600 annotated cherry fruit flies. For better handling in the computational algorithms, the images were augmented to smaller ones by the known image preparation methods “flipping” and “cropping” before performing the deep learning. Five deep learning image recognition models were tested including Faster Region-based Convolutional Neural Network (R-CNN) with two different methods of pretraining, Single Shot Detector (SSD), RetinaNet, and You Only Look Once version 5 (YOLOv5). R‑CNN and RetinaNet models outperformed other ones with a detection average precision of 0.9. The results indicate that deep learning can act as an integral component of an automated system for high-throughput assessment of pest insects in orchards. Therefore, this can reduce the time for repetitive and laborious trap assessment but also increase the observed amount of sticky traps