Search Results

Now showing 1 - 5 of 5
  • Item
    Primarily tests of a optoelectronic in-canopy sensor for evaluation of vertical disease infection in cereals
    (New York, NY : Wiley, 2022) Dammer, Karl-Heinz; Schirrmann, Michael
    BACKGROUND: Health scouting of crops by satellite, airplanes, unmanned aerial (UAV) and ground vehicles can only evaluate the crop from above. The visible leaves may show no disease symptoms, but lower, older leaves not visible from above can do. A mobile in-canopy sensor was developed, carried by a tractor to detect diseases in cereal crops. Photodiodes measure the reflected light in the red and infrared wavelength range at 10 different vertical heights in lateral directions. RESULTS: Significant differences occurred in the vegetation index NDVI of sensor levels operated inside and near the winter wheat canopy between infected (stripe rust: 2018, 2019 / leaf rust: 2020) and control plots. The differences were not significant at those sensor levels operated far above the canopy. CONCLUSIONS: Lateral reflectance measurements inside the crop canopy are able to distinguish between disease-infected and healthy crops. In future mobile in-canopy scouting could be an extension to the common above-canopy scouting praxis for making spraying decisions by the farmer or decision support systems. © 2021 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
  • Item
    Global data on earthworm abundance, biomass, diversity and corresponding environmental properties
    (London : Nature Publ. Group, 2021) Phillips, Helen R. P.; Bach, Elizabeth M.; Bartz, Marie L. C.; Bennett, Joanne M.; Beugnon, Rémy; Briones, Maria J. I.; Brown, George G.; Ferlian, Olga; Gongalsky, Konstantin B.; Guerra, Carlos A.; König-Ries, Birgitta; López-Hernández, Danilo; Loss, Scott R.; Marichal, Raphael; Matula, Radim; Minamiya, Yukio; Moos, Jan Hendrik; Moreno, Gerardo; Morón-Ríos, Alejandro; Motohiro, Hasegawa; Muys, Bart; Krebs, Julia J.; Neirynck, Johan; Norgrove, Lindsey; Novo, Marta; Nuutinen, Visa; Nuzzo, Victoria; Mujeeb Rahman, P.; Pansu, Johan; Paudel, Shishir; Pérès, Guénola; Pérez-Camacho, Lorenzo; Orgiazzi, Alberto; Ponge, Jean-François; Prietzel, Jörg; Rapoport, Irina B.; Rashid, Muhammad Imtiaz; Rebollo, Salvador; Rodríguez, Miguel Á.; Roth, Alexander M.; Rousseau, Guillaume X.; Rozen, Anna; Sayad, Ehsan; Ramirez, Kelly S.; van Schaik, Loes; Scharenbroch, Bryant; Schirrmann, Michael; Schmidt, Olaf; Schröder, Boris; Seeber, Julia; Shashkov, Maxim P.; Singh, Jaswinder; Smith, Sandy M.; Steinwandter, Michael; Russell, David J.; Szlavecz, Katalin; Talavera, José Antonio; Trigo, Dolores; Tsukamoto, Jiro; Uribe-López, Sheila; de Valença, Anne W.; Virto, Iñigo; Wackett, Adrian A.; Warren, Matthew W.; Webster, Emily R.; Schwarz, Benjamin; Wehr, Nathaniel H.; Whalen, Joann K.; Wironen, Michael B.; Wolters, Volkmar; Wu, Pengfei; Zenkova, Irina V.; Zhang, Weixin; Cameron, Erin K.; Eisenhauer, Nico; Wall, Diana H.; Brose, Ulrich; Decaëns, Thibaud; Lavelle, Patrick; Loreau, Michel; Mathieu, Jérôme; Mulder, Christian; van der Putten, Wim H.; Rillig, Matthias C.; Thakur, Madhav P.; de Vries, Franciska T.; Wardle, David A.; Ammer, Christian; Ammer, Sabine; Arai, Miwa; Ayuke, Fredrick O.; Baker, Geoff H.; Baretta, Dilmar; Barkusky, Dietmar; Beauséjour, Robin; Bedano, Jose C.; Birkhofer, Klaus; Blanchart, Eric; Blossey, Bernd; Bolger, Thomas; Bradley, Robert L.; Brossard, Michel; Burtis, James C.; Capowiez, Yvan; Cavagnaro, Timothy R.; Choi, Amy; Clause, Julia; Cluzeau, Daniel; Coors, Anja; Crotty, Felicity V.; Crumsey, Jasmine M.; Dávalos, Andrea; Cosín, Darío J. Díaz; Dobson, Annise M.; Domínguez, Anahí; Duhour, Andrés Esteban; van Eekeren, Nick; Emmerling, Christoph; Falco, Liliana B.; Fernández, Rosa; Fonte, Steven J.; Fragoso, Carlos; Franco, André L. C.; Fusilero, Abegail; Geraskina, Anna P.; Gholami, Shaieste; González, Grizelle; Gundale, Michael J.; López, Mónica Gutiérrez; Hackenberger, Branimir K.; Hackenberger, Davorka K.; Hernández, Luis M.; Hirth, Jeff R.; Hishi, Takuo; Holdsworth, Andrew R.; Holmstrup, Martin; Hopfensperger, Kristine N.; Lwanga, Esperanza Huerta; Huhta, Veikko; Hurisso, Tunsisa T.; Iannone, Basil V.; Iordache, Madalina; Irmler, Ulrich; Ivask, Mari; Jesús, Juan B.; Johnson-Maynard, Jodi L.; Joschko, Monika; Kaneko, Nobuhiro; Kanianska, Radoslava; Keith, Aidan M.; Kernecker, Maria L.; Koné, Armand W.; Kooch, Yahya; Kukkonen, Sanna T.; Lalthanzara, H.; Lammel, Daniel R.; Lebedev, Iurii M.; Le Cadre, Edith; Lincoln, Noa K.
    Earthworms are an important soil taxon as ecosystem engineers, providing a variety of crucial ecosystem functions and services. Little is known about their diversity and distribution at large spatial scales, despite the availability of considerable amounts of local-scale data. Earthworm diversity data, obtained from the primary literature or provided directly by authors, were collated with information on site locations, including coordinates, habitat cover, and soil properties. Datasets were required, at a minimum, to include abundance or biomass of earthworms at a site. Where possible, site-level species lists were included, as well as the abundance and biomass of individual species and ecological groups. This global dataset contains 10,840 sites, with 184 species, from 60 countries and all continents except Antarctica. The data were obtained from 182 published articles, published between 1973 and 2017, and 17 unpublished datasets. Amalgamating data into a single global database will assist researchers in investigating and answering a wide variety of pressing questions, for example, jointly assessing aboveground and belowground biodiversity distributions and drivers of biodiversity change.
  • Item
    Early Detection of Stripe Rust in Winter Wheat Using Deep Residual Neural Networks
    (Lausanne : Frontiers Media, 2021) Schirrmann, Michael; Landwehr, Niels; Giebel, Antje; Garz, Andreas; Dammer, Karl-Heinz
    Stripe rust (Pst) is a major disease of wheat crops leading untreated to severe yield losses. The use of fungicides is often essential to control Pst when sudden outbreaks are imminent. Sensors capable of detecting Pst in wheat crops could optimize the use of fungicides and improve disease monitoring in high-throughput field phenotyping. Now, deep learning provides new tools for image recognition and may pave the way for new camera based sensors that can identify symptoms in early stages of a disease outbreak within the field. The aim of this study was to teach an image classifier to detect Pst symptoms in winter wheat canopies based on a deep residual neural network (ResNet). For this purpose, a large annotation database was created from images taken by a standard RGB camera that was mounted on a platform at a height of 2 m. Images were acquired while the platform was moved over a randomized field experiment with Pst-inoculated and Pst-free plots of winter wheat. The image classifier was trained with 224 × 224 px patches tiled from the original, unprocessed camera images. The image classifier was tested on different stages of the disease outbreak. At patch level the image classifier reached a total accuracy of 90%. To test the image classifier on image level, the image classifier was evaluated with a sliding window using a large striding length of 224 px allowing for fast test performance. At image level, the image classifier reached a total accuracy of 77%. Even in a stage with very low disease spreading (0.5%) at the very beginning of the Pst outbreak, a detection accuracy of 57% was obtained. Still in the initial phase of the Pst outbreak with 2 to 4% of Pst disease spreading, detection accuracy with 76% could be attained. With further optimizations, the image classifier could be implemented in embedded systems and deployed on drones, vehicles or scanning systems for fast mapping of Pst outbreaks.
  • Item
    UAV Oblique Imagery with an Adaptive Micro-Terrain Model for Estimation of Leaf Area Index and Height of Maize Canopy from 3D Point Clouds
    (Basel : MDPI, 2022) Li, Minhui; Shamshiri, Redmond R.; Schirrmann, Michael; Weltzien, Cornelia; Shafian, Sanaz; Laursen, Morten Stigaard
    Leaf area index (LAI) and height are two critical measures of maize crops that are used in ecophysiological and morphological studies for growth evaluation, health assessment, and yield prediction. However, mapping spatial and temporal variability of LAI in fields using handheld tools and traditional techniques is a tedious and costly pointwise operation that provides information only within limited areas. The objective of this study was to evaluate the reliability of mapping LAI and height of maize canopy from 3D point clouds generated from UAV oblique imagery with the adaptive micro-terrain model. The experiment was carried out in a field planted with three cultivars having different canopy shapes and four replicates covering a total area of 48 × 36 m. RGB images in nadir and oblique view were acquired from the maize field at six different time slots during the growing season. Images were processed by Agisoft Metashape to generate 3D point clouds using the structure from motion method and were later processed by MATLAB to obtain clean canopy structure, including height and density. The LAI was estimated by a multivariate linear regression model using crop canopy descriptors derived from the 3D point cloud, which account for height and leaf density distribution along the canopy height. A simulation analysis based on the Sine function effectively demonstrated the micro-terrain model from point clouds. For the ground truth data, a randomized block design with 24 sample areas was used to manually measure LAI, height, N-pen data, and yield during the growing season. It was found that canopy height data from the 3D point clouds has a relatively strong correlation (R2 = 0.89, 0.86, 0.78) with the manual measurement for three cultivars with CH90 . The proposed methodology allows a cost-effective high-resolution mapping of in-field LAI index extraction through UAV 3D data to be used as an alternative to the conventional LAI assessments even in inaccessible regions.
  • Item
    Impact of Camera Viewing Angle for Estimating Leaf Parameters of Wheat Plants from 3D Point Clouds
    (Basel : MDPI, 2021) Li, Minhui; Shamshiri, Redmond R.; Schirrmann, Michael; Weltzien, Cornelia
    Estimation of plant canopy using low-altitude imagery can help monitor the normal growth status of crops and is highly beneficial for various digital farming applications such as precision crop protection. However, extracting 3D canopy information from raw images requires studying the effect of sensor viewing angle by taking into accounts the limitations of the mobile platform routes inside the field. The main objective of this research was to estimate wheat (Triticum aestivum L.) leaf parameters, including leaf length and width, from the 3D model representation of the plants. For this purpose, experiments with different camera viewing angles were conducted to find the optimum setup of a mono-camera system that would result in the best 3D point clouds. The angle-control analytical study was conducted on a four-row wheat plot with a row spacing of 0.17 m and with two seeding densities and growth stages as factors. Nadir and six oblique view image datasets were acquired from the plot with 88% overlapping and were then reconstructed to point clouds using Structure from Motion (SfM) and Multi-View Stereo (MVS) methods. Point clouds were first categorized into three classes as wheat canopy, soil background, and experimental plot. The wheat canopy class was then used to extract leaf parameters, which were then compared with those values from manual measurements. The comparison between results showed that (i) multiple-view dataset provided the best estimation for leaf length and leaf width, (ii) among the single-view dataset, canopy, and leaf parameters were best modeled with angles vertically at -45⸰_ and horizontally at 0⸰_ (VA -45, HA 0), while (iii) in nadir view, fewer underlying 3D points were obtained with a missing leaf rate of 70%. It was concluded that oblique imagery is a promising approach to effectively estimate wheat canopy 3D representation with SfM-MVS using a single camera platform for crop monitoring. This study contributes to the improvement of the proximal sensing platform for crop health assessment. © 2021 by the authors. Licensee MDPI, Basel, Switzerland.