Search Results

Now showing 1 - 2 of 2
  • Item
    Composite materials for innovative urban farming of alternative food sources (macroalgae and crickets)
    (Lausanne : Frontiers Media, 2022) Fricke, Anna; Psarianos, Marios; Sabban, Jakob; Fitzner, Maria; Reipsch, Riccardo; Schlüter, Oliver K.; Dreyer, Christian; Vogt, Julia H.-M.; Schreiner, Monika; Baldermann, Susanne
    Facing an inexorable growth of the human population along with substantial environmental changes, the assurance of food security is a major challenge of the present century. To ensure responsible food consumption and production (SDG 12), new approaches in the food system are required. Thus, environmentally controlled, sustainable production of alternative food sources are of key interest for both urban agriculture and food research. To face the current challenge of integrating food production systems within existing structures, multidisciplinary discourses are required. Here, we bring together novel technologies and indoor farming techniques with the aim of supporting the development of sustainable food production systems. For this purpose, we investigated the feasibility of 10 composite materials for their innovative use as structural support in macroalgal cultivation (settlement substrates) and cricket rearing (housing). Considering material resistance, rigidity, and direct material-organism interactions, the bio-based composite polylactic acid (PLA) was identified as a suitable material for joint farming. For macroalgae cultivation, PLA sustained the corrosive cultivation conditions and provided a suitable substrate without affecting the macroalgal physiology or nutritional composition (carotenoids and chlorophylls). For cricket rearing, PLA provided a suitable and recyclable shelter, which was quickly accepted by the animals without any observed harm. In contrast, other common composite components like phenolic resin or aramid were found to be unsuitable due to being harmful for the cultivated organisms or instable toward the applied sterilization procedure. This multidisciplinary study not only provides profound insights in the developing field of urban indoor food production from a new perspective, but also bridges material science and farming approaches to develop new sustainable and resilient food production systems.
  • Item
    Thermal Impact on the Culturable Microbial Diversity Along the Processing Chain of Flour From Crickets (Acheta domesticus)
    (Lausanne : Frontiers Media, 2020) Fröhling, Antje; Bußler, Sara; Durek, Julia; Schlüter, Oliver K.
    The role of insects for human consumption has lately increased in interest and in order to deliver safe and high-quality raw materials and ingredients for food and feed applications, processing of insects is a major pre-requisite. For edible insects a thermal treatment and appropriate storage conditions are recommended to minimize the microbiological risk and the impact of processing methods on the microbial contamination needs to be considered and determined. Based on standard process conditions for the production of Acheta domesticus flour, different heating treatments were used to reduce the microbial load of A. domesticus. In addition, the drying temperature and drying time were varied to determine whether the required residual moisture of <5% can be achieved more quickly with consistent microbial quality. The influence of the process conditions on the microbial community of A. domesticus along the processing chain was finally investigated under optimized process conditions. The total viable count was reduced from 9.24 log10 CFU/gDM to 1.98 log10 CFU/gDM along the entire processing chain. While Bacillaceae, Enterobacteriaceae, Enterococcaceae, and yeast and molds were no longer detectable in the A. domesticus flour, Staphylococcaceae and mesophilic spore forming bacteria were still found in the flour. The results indicate that the steaming process is essential for effectively increasing microbial safety since this processing step showed the highest inactivation. It is recommended to not only evaluate the total viable count but also to monitor changes in microbial diversity during processing to ensure microbial safety of the final product. © Copyright © 2020 Fröhling, Bußler, Durek and Schlüter.