Search Results

Now showing 1 - 4 of 4
  • Item
    Bacterial symbiont subpopulations have different roles in a deep-sea symbiosis
    (Cambridge : eLife Sciences Publications, 2021) Hinzke, Tjorven; Kleiner, Manuel; Meister, Mareike; Schlüter, Rabea; Hentschker, Christian; Pané-Farré, Jan; Hildebrandt, Petra; Felbeck, Horst; Sievert, Stefan M; Bonn, Florian; Völker, Uwe; Becher, Dörte; Schweder, Thomas; Markert, Stephanie
    The hydrothermal vent tubeworm Riftia pachyptila hosts a single 16S rRNA phylotype of intracellular sulfur-oxidizing symbionts, which vary considerably in cell morphology and exhibit a remarkable degree of physiological diversity and redundancy, even in the same host. To elucidate whether multiple metabolic routes are employed in the same cells or rather in distinct symbiont subpopulations, we enriched symbionts according to cell size by density gradient centrifugation. Metaproteomic analysis, microscopy, and flow cytometry strongly suggest that Riftia symbiont cells of different sizes represent metabolically dissimilar stages of a physiological differentiation process: While small symbionts actively divide and may establish cellular symbiont-host interaction, large symbionts apparently do not divide, but still replicate DNA, leading to DNA endoreduplication. Moreover, in large symbionts, carbon fixation and biomass production seem to be metabolic priorities. We propose that this division of labor between smaller and larger symbionts benefits the productivity of the symbiosis as a whole.
  • Item
    In-Vitro Biofilm Removal Efficacy Using Water Jet in Combination with Cold Plasma Technology on Dental Titanium Implants
    (Basel : Molecular Diversity Preservation International, 2023) Matthes, Rutger; Jablonowski, Lukasz; Miebach, Lea; Pitchika, Vinay; Holtfreter, Birte; Eberhard, Christian; Seifert, Leo; Gerling, Torsten; Schlüter, Rabea; Kocher, Thomas; Bekeschus, Sander
    Peri-implantitis-associated inflammation can lead to bone loss and implant failure. Current decontamination measures are ineffective due to the implants’ complex geometry and rough surfaces providing niches for microbial biofilms. A modified water jet system (WaterJet) was combined with cold plasma technology (CAP) to achieve superior antimicrobial efficacy compared to cotton gauze treatment. Seven-day-old multi-species-contaminated titanium discs and implants were investigated as model systems. The efficacy of decontamination on implants was determined by rolling the implants over agar and determining colony-forming units supported by scanning electron microscopy image quantification of implant surface features. The inflammatory consequences of mono and combination treatments were investigated with peripheral blood mononuclear cell surface marker expression and chemokine and cytokine release profiles on titanium discs. In addition, titanium discs were assayed using fluorescence microscopy. Cotton gauze was inferior to WaterJet treatment according to all types of analysis. In combination with the antimicrobial effect of CAP, decontamination was improved accordingly. Mono and CAP-combined treatment on titanium surfaces alone did not unleash inflammation. Simultaneously, chemokine and cytokine release was dramatically reduced in samples that had benefited from additional antimicrobial effects through CAP. The combined treatment with WaterJet and CAP potently removed biofilm and disinfected rough titanium implant surfaces. At the same time, non-favorable rendering of the surface structure or its pro-inflammatory potential through CAP was not observed.
  • Item
    Effects of cold atmospheric pressure plasma and disinfecting agents on Candida albicans in root canals of extracted human teeth
    (Weinheim : Wiley-VCH-Verl., 2020) Kerlikowski, Anne; Matthes, Rutger; Pink, Christiane; Steffen, Heike; Schlüter, Rabea; Holtfreter, Birte; Weltmann, Klaus-Dieter; von Woedtke, Thomas; Kocher, Thomas; Jablonowski, Lukasz
    Reinfection in endodontically treated teeth is linked to the complexity of the root canal system, which is problematic to reach with conventional disinfection methods. As plasma is expected to have the ability to sanitize narrow areas, the aim of this study was to analyze the effect of cold atmospheric pressure plasma (CAP) on Candida albicans in root canals of extracted human teeth. CAP was applied as mono treatment and in combination with standard endodontic disinfectants (sodium hypochlorite, chlorhexidine and octenidine). Disinfection efficiency was evaluated as reduction of the logarithm of colony forming units per milliliter (log10 CFU/mL) supported by scanning electron microscopy as imaging technique. Plasma alone showed the highest reduction of log10 CFU, suggesting the best disinfection properties of all tested agents. © 2020 The Authors. Journal of Biophotonics published by Wiley-VCH GmbH.
  • Item
    In-Vitro Biofilm Removal Efficacy Using Water Jet in Combination with Cold Plasma Technology on Dental Titanium Implants
    (Basel : Molecular Diversity Preservation International, 2023) Matthes, Rutger; Jablonowski, Lukasz; Miebach, Lea; Pitchika, Vinay; Holtfreter, Birte; Eberhard, Christian; Seifert, Leo; Gerling, Torsten; Schlüter, Rabea; Kocher, Thomas; Bekeschus, Sander
    Peri-implantitis-associated inflammation can lead to bone loss and implant failure. Current decontamination measures are ineffective due to the implants’ complex geometry and rough surfaces providing niches for microbial biofilms. A modified water jet system (WaterJet) was combined with cold plasma technology (CAP) to achieve superior antimicrobial efficacy compared to cotton gauze treatment. Seven-day-old multi-species-contaminated titanium discs and implants were investigated as model systems. The efficacy of decontamination on implants was determined by rolling the implants over agar and determining colony-forming units supported by scanning electron microscopy image quantification of implant surface features. The inflammatory consequences of mono and combination treatments were investigated with peripheral blood mononuclear cell surface marker expression and chemokine and cytokine release profiles on titanium discs. In addition, titanium discs were assayed using fluorescence microscopy. Cotton gauze was inferior to WaterJet treatment according to all types of analysis. In combination with the antimicrobial effect of CAP, decontamination was improved accordingly. Mono and CAP-combined treatment on titanium surfaces alone did not unleash inflammation. Simultaneously, chemokine and cytokine release was dramatically reduced in samples that had benefited from additional antimicrobial effects through CAP. The combined treatment with WaterJet and CAP potently removed biofilm and disinfected rough titanium implant surfaces. At the same time, non-favorable rendering of the surface structure or its pro-inflammatory potential through CAP was not observed.