Search Results

Now showing 1 - 2 of 2
  • Item
    In vivo detection of changes in cutaneous carotenoids after chemotherapy using shifted excitation resonance Raman difference and fluorescence spectroscopy
    (Oxford [u.a.] : Wiley-Blackwell, 2020) Jung, Sora; Darvin, Maxim E.; Schleusener, Johannes; Thiede, Gisela; Lademann, Juergen; Braune, Marcel; Elban, Felia; Fuss, Harald
    Background: Various cutaneous toxicities under chemotherapy indicate a local effect of chemotherapy by secretion after systemic application. Here, changes in the fluorescence and Raman spectral properties of the stratum corneum subsequent to intravenous chemotherapy were assessed. Methods: Twenty healthy subjects and 20 cancer patients undergoing chemotherapy were included. Measurement time points in cancer patients were before the first cycle of chemotherapy (Tbase) and immediately after intravenous application of the chemotherapy (T1). Healthy subjects were measured once without any further intervention. Measurements were conducted using an individually manufactured system consisting of a handheld probe and a wavelength-tunable diode laser-based 488 nm SHG light source. Hereby, changes in both skin fluorescence and shifted excitation resonance Raman difference spectroscopy (SERRDS) carotenoid signals were assessed. Results: Healthy subjects showed significantly (P <.001) higher mean concentrations of carotenoids compared to cancer subjects at Tbase. An increase in fluorescence intensity was detected in almost all patients after chemotherapy, especially after doxorubicin infusion. Furthermore, a decrease in the carotenoid concentration in the skin after chemotherapy was found. Conclusion: The SERRDS based noninvasive detection can be used as an indirect quantitative assessment of fluorescent chemotherapeutics. The lower carotenoid SERRDS intensities at Tbase might be due to cancerous diseases and co-medication. © 2020 The Authors. Skin Research and Technology Published by John Wiley & Sons Ltd.
  • Item
    Skin tolerant inactivation of multiresistant pathogens using far-UVC LEDs
    ([London] : Macmillan Publishers Limited, part of Springer Nature, 2021) Glaab, Johannes; Lobo-Ploch, Neysha; Cho, Hyun Kyong; Filler, Thomas; Gundlach, Heiko; Guttmann, Martin; Hagedorn, Sylvia; Lohan, Silke B.; Mehnke, Frank; Schleusener, Johannes; Sicher, Claudia; Sulmoni, Luca; Wernicke, Tim; Wittenbecher, Lucas; Woggon, Ulrike; Zwicker, Paula; Kramer, Axel; Meinke, Martina C.; Kneissl, Michael; Weyers, Markus; Winterwerber, Ulrike; Einfeldt, Sven
    Multiresistant pathogens such as methicillin-resistant Staphylococcus aureus (MRSA) cause serious postoperative infections. A skin tolerant far-UVC (< 240 nm) irradiation system for their inactivation is presented here. It uses UVC LEDs in combination with a spectral filter and provides a peak wavelength of 233 nm, with a full width at half maximum of 12 nm, and an irradiance of 44 µW/cm2. MRSA bacteria in different concentrations on blood agar plates were inactivated with irradiation doses in the range of 15–40 mJ/cm2. Porcine skin irradiated with a dose of 40 mJ/cm2 at 233 nm showed only 3.7% CPD and 2.3% 6-4PP DNA damage. Corresponding irradiation at 254 nm caused 11–14 times higher damage. Thus, the skin damage caused by the disinfectant doses is so small that it can be expected to be compensated by the skin's natural repair mechanisms. LED-based far-UVC lamps could therefore soon be used in everyday clinical practice to eradicate multiresistant pathogens directly on humans.