Search Results

Now showing 1 - 2 of 2
  • Item
    Incremental improvements of 2030 targets insufficient to achieve the Paris Agreement goals
    (Göttingen : Copernicus Publ., 2020) Geiges, Andreas; Nauels, Alexander; Yanguas Parra, Paola; Andrijevic, Marina; Hare, William; Pfleiderer, Peter; Schaeffer, Michiel; Schleussner, Carl-Friedrich
    Current global mitigation ambition up to 2030 under the Paris Agreement, reflected in the National Determined Contributions (NDCs), is insufficient to achieve the agreement's 1.5 °C long-term temperature limit. As governments are preparing new and updated NDCs for 2020, the question as to how much collective improvement is achieved is a pivotal one for the credibility of the international climate regime. The recent Special Report on Global Warming of 1.5 °C by the Intergovernmental Panel on Climate Change has assessed a wide range of scenarios that achieve the 1.5 °C limit. Those pathways are characterised by a substantial increase in near-term action and total greenhouse gas (GHG) emission levels about 50 % lower than what is implied by current NDCs. Here we assess the outcomes of different scenarios of NDC updating that fall short of achieving this 1.5 °C benchmark. We find that incremental improvements in reduction targets, even if achieved globally, are insufficient to align collective ambition with the goals of the Paris Agreement. We provide estimates for global mean temperature increase by 2100 for different incremental NDC update scenarios and illustrate climate impacts under those median scenarios for extreme temperature, long-term sea-level rise and economic damages for the most vulnerable countries. Under the assumption of maintaining ambition as reflected in current NDCs up to 2100 and beyond, we project a reduction in the gross domestic product (GDP) in tropical countries of around 60 % compared to a no-climate-change scenario and median long-term sea-level rise of close to 2 m in 2300. About half of these impacts can be avoided by limiting warming to 1.5 °C or below. Scenarios of more incremental NDC improvements do not lead to comparable reductions in climate impacts. An increase in aggregated NDC ambition of big emitters by 33 % in 2030 does not reduce presented climate impacts by more than about half compared to limiting warming to 1.5 °C. Our results underscore that a transformational increase in 2030 ambition is required to achieve the goals of the Paris Agreement and avoid the worst impacts of climate change. © 2020 SPIE. All rights reserved.
  • Item
    Half a degree additional warming, prognosis and projected impacts (HAPPI): Background and experimental design
    (München : European Geopyhsical Union, 2017) Mitchell, Daniel; AchutaRao, Krishna; Allen, Myles; Bethke, Ingo; Beyerle, Urs; Ciavarella, Andrew; Forster, Piers M.; Fuglestvedt, Jan; Gillett, Nathan; Haustein, Karsten; Ingram, William; Iversen, Trond; Kharin, Viatcheslav; Klingaman, Nicholas; Massey, Neil; Fischer, Erich; Schleussner, Carl-Friedrich; Scinocca, John; Seland, Øyvind; Shiogama, Hideo; Shuckburgh, Emily; Sparrow, Sarah; Stone, Dáithí; Uhe, Peter; Wallom, David; Wehner, Michael; Zaaboul, Rashyd
    The Intergovernmental Panel on Climate Change (IPCC) has accepted the invitation from the UNFCCC to provide a special report on the impacts of global warming of 1.5°C above pre-industrial levels and on related global greenhouse-gas emission pathways. Many current experiments in, for example, the Coupled Model Inter-comparison Project (CMIP), are not specifically designed for informing this report. Here, we document the design of the half a degree additional warming, projections, prognosis and impacts (HAPPI) experiment. HAPPI provides a framework for the generation of climate data describing how the climate, and in particular extreme weather, might differ from the present day in worlds that are 1.5 and 2.0°C warmer than pre-industrial conditions. Output from participating climate models includes variables frequently used by a range of impact models. The key challenge is to separate the impact of an additional approximately half degree of warming from uncertainty in climate model responses and internal climate variability that dominate CMIP-style experiments under low-emission scenarios. Large ensembles of simulations (> 50 members) of atmosphere-only models for three time slices are proposed, each a decade in length: the first being the most recent observed 10-year period (2006–2015), the second two being estimates of a similar decade but under 1.5 and 2°C conditions a century in the future. We use the representative concentration pathway 2.6 (RCP2.6) to provide the model boundary conditions for the 1.5°C scenario, and a weighted combination of RCP2.6 and RCP4.5 for the 2°C scenario.