Search Results

Now showing 1 - 10 of 11
Loading...
Thumbnail Image
Item

State-of-the-art global models underestimate impacts from climate extremes

2019, Schewe, Jacob, Gosling, Simon N., Reyer, Christopher, Zhao, Fang, Ciais, Philippe, Elliott, Joshua, Francois, Louis, Huber, Veronika, Lotze, Heike K., Seneviratne, Sonia I., van Vliet, Michelle T. H., Vautard, Robert, Wada, Yoshihide, Breuer, Lutz, Büchner, Matthias, Carozza, David A., Chang, Jinfeng, Coll, Marta, Deryng, Delphine, de Wit, Allard, Eddy, Tyler D., Folberth, Christian, Frieler, Katja, Friend, Andrew D., Gerten, Dieter, Gudmundsson, Lukas, Hanasaki, Naota, Ito, Akihiko, Khabarov, Nikolay, Kim, Hyungjun, Lawrence, Peter, Morfopoulos, Catherine, Müller, Christoph, Müller Schmied, Hannes, Orth, René, Ostberg, Sebastian, Pokhrel, Yadu, Pugh, Thomas A. M., Sakurai, Gen, Satoh, Yusuke, Schmid, Erwin, Stacke, Tobias, Steenbeek, Jeroen, Steinkamp, Jörg, Tang, Qiuhong, Tian, Hanqin, Tittensor, Derek P., Volkholz, Jan, Wang, Xuhui, Warszawski, Lila

Global impact models represent process-level understanding of how natural and human systems may be affected by climate change. Their projections are used in integrated assessments of climate change. Here we test, for the first time, systematically across many important systems, how well such impact models capture the impacts of extreme climate conditions. Using the 2003 European heat wave and drought as a historical analogue for comparable events in the future, we find that a majority of models underestimate the extremeness of impacts in important sectors such as agriculture, terrestrial ecosystems, and heat-related human mortality, while impacts on water resources and hydropower are overestimated in some river basins; and the spread across models is often large. This has important implications for economic assessments of climate change impacts that rely on these models. It also means that societal risks from future extreme events may be greater than previously thought.

Loading...
Thumbnail Image
Item

Evapotranspiration simulations in ISIMIP2a—Evaluation of spatio-temporal characteristics with a comprehensive ensemble of independent datasets

2018, Wartenburger, Richard, Seneviratne, Sonia I, Hirschi, Martin, Chang, Jinfeng, Ciais, Philippe, Deryng, Delphine, Elliott, Joshua, Folberth, Christian, Gosling, Simon N, Gudmundsson, Lukas, Henrot, Alexandra-Jane, Hickler, Thomas, Ito, Akihiko, Khabarov, Nikolay, Kim, Hyungjun, Leng, Guoyong, Liu, Junguo, Liu, Xingcai, Masaki, Yoshimitsu, Morfopoulos, Catherine, Müller, Christoph, Müller Schmied, Hannes, Nishina, Kazuya, Orth, Rene, Pokhrel, Yadu, Pugh, Thomas A M, Satoh, Yusuke, Schaphoff, Sibyll, Schmid, Erwin, Sheffield, Justin, Stacke, Tobias, Steinkamp, Joerg, Tang, Qiuhong, Thiery, Wim, Wada, Yoshihide, Wang, Xuhui, Weedon, Graham P, Yang, Hong, Zhou, Tian

Actual land evapotranspiration (ET) is a key component of the global hydrological cycle and an essential variable determining the evolution of hydrological extreme events under different climate change scenarios. However, recently available ET products show persistent uncertainties that are impeding a precise attribution of human-induced climate change. Here, we aim at comparing a range of independent global monthly land ET estimates with historical model simulations from the global water, agriculture, and biomes sectors participating in the second phase of the Inter-Sectoral Impact Model Intercomparison Project (ISIMIP2a). Among the independent estimates, we use the EartH2Observe Tier-1 dataset (E2O), two commonly used reanalyses, a pre-compiled ensemble product (LandFlux-EVAL), and an updated collection of recently published datasets that algorithmically derive ET from observations or observations-based estimates (diagnostic datasets). A cluster analysis is applied in order to identify spatio-temporal differences among all datasets and to thus identify factors that dominate overall uncertainties. The clustering is controlled by several factors including the model choice, the meteorological forcing used to drive the assessed models, the data category (models participating in the different sectors of ISIMIP2a, E2O models, diagnostic estimates, reanalysis-based estimates or composite products), the ET scheme, and the number of soil layers in the models. By using these factors to explain spatial and spatio-temporal variabilities in ET, we find that the model choice mostly dominates (24%–40% of variance explained), except for spatio-temporal patterns of total ET, where the forcing explains the largest fraction of the variance (29%). The most dominant clusters of datasets are further compared with individual diagnostic and reanalysis-based estimates to assess their representation of selected heat waves and droughts in the Great Plains, Central Europe and western Russia. Although most of the ET estimates capture these extreme events, the generally large spread among the entire ensemble indicates substantial uncertainties.

Loading...
Thumbnail Image
Item

Global gridded crop model evaluation: Benchmarking, skills, deficiencies and implications

2017, Müller, Christoph, Elliott, Joshua, Chryssanthacopoulos, James, Arneth, Almut, Balkovic, Juraj, Ciais, Philippe, Deryng, Delphine, Folberth, Christian, Glotter, Michael, Hoek, Steven, Iizumi, Toshichika, Izaurralde, Roberto C., Jones, Curtis, Khabarov, Nikolay, Lawrence, Peter, Liu, Wenfeng, Olin, Stefan, Pugh, Thomas A.M., Ray, Deepak K., Reddy, Ashwan, Rosenzweig, Cynthia, Ruane, Alex C., Sakurai, Gen, Schmid, Erwin, Skalsky, Rastislav, Song, Carol X., Wang, Xuhui, de Wit, Allard, Yang, Hong

Crop models are increasingly used to simulate crop yields at the global scale, but so far there is no general framework on how to assess model performance. Here we evaluate the simulation results of 14 global gridded crop modeling groups that have contributed historic crop yield simulations for maize, wheat, rice and soybean to the Global Gridded Crop Model Intercomparison (GGCMI) of the Agricultural Model Intercomparison and Improvement Project (AgMIP). Simulation results are compared to reference data at global, national and grid cell scales and we evaluate model performance with respect to time series correlation, spatial correlation and mean bias. We find that global gridded crop models (GGCMs) show mixed skill in reproducing time series correlations or spatial patterns at the different spatial scales. Generally, maize, wheat and soybean simulations of many GGCMs are capable of reproducing larger parts of observed temporal variability (time series correlation coefficients (r) of up to 0.888 for maize, 0.673 for wheat and 0.643 for soybean at the global scale) but rice yield variability cannot be well reproduced by most models. Yield variability can be well reproduced for most major producing countries by many GGCMs and for all countries by at least some. A comparison with gridded yield data and a statistical analysis of the effects of weather variability on yield variability shows that the ensemble of GGCMs can explain more of the yield variability than an ensemble of regression models for maize and soybean, but not for wheat and rice. We identify future research needs in global gridded crop modeling and for all individual crop modeling groups. In the absence of a purely observation-based benchmark for model evaluation, we propose that the best performing crop model per crop and region establishes the benchmark for all others, and modelers are encouraged to investigate how crop model performance can be increased. We make our evaluation system accessible to all crop modelers so that other modeling groups can also test their model performance against the reference data and the GGCMI benchmark.

Loading...
Thumbnail Image
Item

A regional nuclear conflict would compromise global food security

2020, Jägermeyr, Jonas, Robock, Alan, Elliott, Joshua, Müller, Christoph, Xia, Lili, Khabarov, Nikolay, Folberth, Christian, Schmid, Erwin, Liu, Wenfeng, Zabel, Florian, Rabin, Sam S., Puma, Michael J., Heslin, Alison, Franke, James, Foster, Ian, Asseng, Senthold, Bardeen, Charles G., Toon, Owen B., Rosenzweig, Cynthia

A limited nuclear war between India and Pakistan could ignite fires large enough to emit more than 5 Tg of soot into the stratosphere. Climate model simulations have shown severe resulting climate perturbations with declines in global mean temperature by 1.8 °C and precipitation by 8%, for at least 5 y. Here we evaluate impacts for the global food system. Six harmonized state-of-the-art crop models show that global caloric production from maize, wheat, rice, and soybean falls by 13 (±1)%, 11 (±8)%, 3 (±5)%, and 17 (±2)% over 5 y. Total single-year losses of 12 (±4)% quadruple the largest observed historical anomaly and exceed impacts caused by historic droughts and volcanic eruptions. Colder temperatures drive losses more than changes in precipitation and solar radiation, leading to strongest impacts in temperate regions poleward of 30°N, including the United States, Europe, and China for 10 to 15 y. Integrated food trade network analyses show that domestic reserves and global trade can largely buffer the production anomaly in the first year. Persistent multiyear losses, however, would constrain domestic food availability and propagate to the Global South, especially to food-insecure countries. By year 5, maize and wheat availability would decrease by 13% globally and by more than 20% in 71 countries with a cumulative population of 1.3 billion people. In view of increasing instability in South Asia, this study shows that a regional conflict using <1% of the worldwide nuclear arsenal could have adverse consequences for global food security unmatched in modern history.

Loading...
Thumbnail Image
Item

Global irrigation contribution to wheat and maize yield

2021, Wang, Xuhui, Müller, Christoph, Elliot, Joshua, Mueller, Nathaniel D., Ciais, Philippe, Jägermeyr, Jonas, Gerber, James, Dumas, Patrice, Wang, Chenzhi, Yang, Hui, Li, Laurent, Deryng, Delphine, Folberth, Christian, Liu, Wenfeng, Makowski, David, Olin, Stefan, Pugh, Thomas A. M., Reddy, Ashwan, Schmid, Erwin, Jeong, Sujong, Zhou, Feng, Piao, Shilong

Irrigation is the largest sector of human water use and an important option for increasing crop production and reducing drought impacts. However, the potential for irrigation to contribute to global crop yields remains uncertain. Here, we quantify this contribution for wheat and maize at global scale by developing a Bayesian framework integrating empirical estimates and gridded global crop models on new maps of the relative difference between attainable rainfed and irrigated yield (ΔY). At global scale, ΔY is 34 ± 9% for wheat and 22 ± 13% for maize, with large spatial differences driven more by patterns of precipitation than that of evaporative demand. Comparing irrigation demands with renewable water supply, we find 30–47% of contemporary rainfed agriculture of wheat and maize cannot achieve yield gap closure utilizing current river discharge, unless more water diversion projects are set in place, putting into question the potential of irrigation to mitigate climate change impacts.

Loading...
Thumbnail Image
Item

Understanding the weather signal in national crop‐yield variability

2017, Frieler, Katja, Schauberger, Bernhard, Arneth, Almut, Balkovič, Juraj, Chryssanthacopoulos, James, Deryng, Delphine, Elliott, Joshua, Folberth, Christian, Khabarov, Nikolay, Müller, Christoph, Olin, Stefan, Smith, Steven J., Pugh, Thomas A.M., Schaphoff, Sibyll, Schewe, Jacob, Schmid, Erwin, Warszawski, Lila, Levermann, Anders

Year‐to‐year variations in crop yields can have major impacts on the livelihoods of subsistence farmers and may trigger significant global price fluctuations, with severe consequences for people in developing countries. Fluctuations can be induced by weather conditions, management decisions, weeds, diseases, and pests. Although an explicit quantification and deeper understanding of weather‐induced crop‐yield variability is essential for adaptation strategies, so far it has only been addressed by empirical models. Here, we provide conservative estimates of the fraction of reported national yield variabilities that can be attributed to weather by state‐of‐the‐art, process‐based crop model simulations. We find that observed weather variations can explain more than 50% of the variability in wheat yields in Australia, Canada, Spain, Hungary, and Romania. For maize, weather sensitivities exceed 50% in seven countries, including the United States. The explained variance exceeds 50% for rice in Japan and South Korea and for soy in Argentina. Avoiding water stress by simulating yields assuming full irrigation shows that water limitation is a major driver of the observed variations in most of these countries. Identifying the mechanisms leading to crop‐yield fluctuations is not only fundamental for dampening fluctuations, but is also important in the context of the debate on the attribution of loss and damage to climate change. Since process‐based crop models not only account for weather influences on crop yields, but also provide options to represent human‐management measures, they could become essential tools for differentiating these drivers, and for exploring options to reduce future yield fluctuations.

Loading...
Thumbnail Image
Item

Shared Socio-economic Pathways for European agriculture and food systems: The Eur-Agri-SSPs

2020, Le Mouël, Chantal, Mathijs, Erik, Mehdi, Bano, Mittenzwei, Klaus, Mora, Olivier, Øistad, Knut, Øygarden, Lillian, Priess, Jörg A., Reidsma, Pytrik, Schaldach, Rüdiger, Schönhart, Martin, Mitter, Hermine, Techen, Anja-K., Sinabell, Franz, Helming, Katharina, Schmid, Erwin, Bodirsky, Benjamin L., Holman, Ian, Kok, Kasper, Lehtonen, Heikki, Leip, Adrian

Scenarios describe plausible and internally consistent views of the future. They can be used by scientists, policymakers and entrepreneurs to explore the challenges of global environmental change given an appropriate level of spatial and sectoral detail and systematic development. We followed a nine-step protocol to extend and enrich a set of global scenarios – the Shared Socio-economic Pathways (SSPs) – providing regional and sectoral detail for European agriculture and food systems using a one-to-one nesting participatory approach. The resulting five Eur-Agri-SSPs are titled (1) Agriculture on sustainable paths, (2) Agriculture on established paths, (3) Agriculture on separated paths, (4) Agriculture on unequal paths, and (5) Agriculture on high-tech paths. They describe alternative plausible qualitative evolutions of multiple drivers of particular importance and high uncertainty for European agriculture and food systems. The added value of the protocol-based storyline development process lies in the conceptual and methodological transparency and rigor; the stakeholder driven selection of the storyline elements; and consistency checks within and between the storylines. Compared to the global SSPs, the five Eur-Agri-SSPs provide rich thematic and regional details and are thus a solid basis for integrated assessments of agriculture and food systems and their response to future socio-economic and environmental changes. © 2020 The Author(s)

Loading...
Thumbnail Image
Item

A protocol to develop Shared Socio-economic Pathways for European agriculture

2019, Mitter, Hermine, Techen, Anja-K., Sinabell, Franz, Helming, Katharina, Kok, Kasper, Priess, Jörg A., Schmid, Erwin, Bodirsky, Benjamin L., Holman, Ian, Lehtonen, Heikki, Leip, Adrian, Le Mouël, Chantal, Mehdi, Bano, Michetti, Melania, Mittenzwei, Klaus, Mora, Olivier, Øygarden, Lillian, Reidsma, Pytrik, Schaldach, Rüdiger, Schönhart, Martin

Moving towards a more sustainable future requires concerted actions, particularly in the context of global climate change. Integrated assessments of agricultural systems (IAAS) are considered valuable tools to provide sound information for policy and decision-making. IAAS use storylines to define socio-economic and environmental framework assumptions. While a set of qualitative global storylines, known as the Shared Socio-economic Pathways (SSPs), is available to inform integrated assessments at large scales, their spatial resolution and scope is insufficient for regional studies in agriculture. We present a protocol to operationalize the development of Shared Socio-economic Pathways for European agriculture – Eur-Agri-SSPs – to support IAAS. The proposed design of the storyline development process is based on six quality criteria: plausibility, vertical and horizontal consistency, salience, legitimacy, richness and creativity. Trade-offs between these criteria may occur. The process is science-driven and iterative to enhance plausibility and horizontal consistency. A nested approach is suggested to link storylines across scales while maintaining vertical consistency. Plausibility, legitimacy, salience, richness and creativity shall be stimulated in a participatory and interdisciplinary storyline development process. The quality criteria and process design requirements are combined in the protocol to increase conceptual and methodological transparency. The protocol specifies nine working steps. For each step, suitable methods are proposed and the intended level and format of stakeholder engagement are discussed. A key methodological challenge is to link global SSPs with regional perspectives provided by the stakeholders, while maintaining vertical consistency and stakeholder buy-in. We conclude that the protocol facilitates systematic development and evaluation of storylines, which can be transferred to other regions, sectors and scales and supports inter-comparisons of IAAS. © 2019 Elsevier Ltd

Loading...
Thumbnail Image
Item

Implications of climate mitigation for future agricultural production

2015, Müller, Christoph, Elliott, Joshua, Chryssanthacopoulos, James, Deryng, Delphine, Folberth, Christian, Pugh, Thomas A.M., Schmid, Erwin

Climate change is projected to negatively impact biophysical agricultural productivity in much of the world. Actions taken to reduce greenhouse gas emissions and mitigate future climate changes, are thus of central importance for agricultural production. Climate impacts are, however, not unidirectional; some crops in some regions (primarily higher latitudes) are projected to benefit, particularly if increased atmospheric carbon dioxide is assumed to strongly increase crop productivity at large spatial and temporal scales. Climate mitigation measures that are implemented by reducing atmospheric carbon dioxide concentrations lead to reductions both in the strength of climate change and in the benefits of carbon dioxide fertilization. Consequently, analysis of the effects of climate mitigation on agricultural productivity must address not only regions for which mitigation is likely to reduce or even reverse climate damages. There are also regions that are likely to see increased crop yields due to climate change, which may lose these added potentials under mitigation action. Comparing data from the most comprehensive archive of crop yield projections publicly available, we find that climate mitigation leads to overall benefits from avoided damages at the global scale and especially in many regions that are already at risk of food insecurity today. Ignoring controversial carbon dioxide fertilization effects on crop productivity, we find that for the median projection aggressive mitigation could eliminate ~81% of the negative impacts of climate change on biophysical agricultural productivity globally by the end of the century. In this case, the benefits of mitigation typically extend well into temperate regions, but vary by crop and underlying climate model projections. Should large benefits to crop yields from carbon dioxide fertilization be realized, the effects of mitigation become much more mixed, though still positive globally and beneficial in many food insecure countries.

Loading...
Thumbnail Image
Item

Parameterization-induced uncertainties and impacts of crop management harmonization in a global gridded crop model ensemble

2019, Folberth, Christian, Elliott, Joshua, Müller, Christoph, Balkovič, Juraj, Chryssanthacopoulos, James, Izaurralde, Roberto C., Jones, Curtis D., Khabarov, Nikolay, Liu, Wenfeng, Reddy, Ashwan, Schmid, Erwin, Skalský, Rastislav, Yang, Hong, Arneth, Almut, Ciais, Philippe, Deryng, Delphine, Lawrence, Peter J., Olin, Stefan, Pugh, Thomas A.M., Ruane, Alex C., Wang, Xuhui

Global gridded crop models (GGCMs) combine agronomic or plant growth models with gridded spatial input data to estimate spatially explicit crop yields and agricultural externalities at the global scale. Differences in GGCM outputs arise from the use of different biophysical models, setups, and input data. GGCM ensembles are frequently employed to bracket uncertainties in impact studies without investigating the causes of divergence in outputs. This study explores differences in maize yield estimates from five GGCMs based on the public domain field-scale model Environmental Policy Integrated Climate (EPIC) that participate in the AgMIP Global Gridded Crop Model Intercomparison initiative. Albeit using the same crop model, the GGCMs differ in model version, input data, management assumptions, parameterization, and selection of subroutines affecting crop yield estimates via cultivar distributions, soil attributes, and hydrology among others. The analyses reveal inter-annual yield variability and absolute yield levels in the EPIC-based GGCMs to be highly sensitive to soil parameterization and crop management. All GGCMs show an intermediate performance in reproducing reported yields with a higher skill if a static soil profile is assumed or sufficient plant nutrients are supplied. An in-depth comparison of setup domains for two EPIC-based GGCMs shows that GGCM performance and plant stress responses depend substantially on soil parameters and soil process parameterization, i.e. hydrology and nutrient turnover, indicating that these often neglected domains deserve more scrutiny. For agricultural impact assessments, employing a GGCM ensemble with its widely varying assumptions in setups appears the best solution for coping with uncertainties from lack of comprehensive global data on crop management, cultivar distributions and coefficients for agro-environmental processes. However, the underlying assumptions require systematic specifications to cover representative agricultural systems and environmental conditions. Furthermore, the interlinkage of parameter sensitivity from various domains such as soil parameters, nutrient turnover coefficients, and cultivar specifications highlights that global sensitivity analyses and calibration need to be performed in an integrated manner to avoid bias resulting from disregarded core model domains. Finally, relating evaluations of the EPIC-based GGCMs to a wider ensemble based on individual core models shows that structural differences outweigh in general differences in configurations of GGCMs based on the same model, and that the ensemble mean gains higher skill from the inclusion of structurally different GGCMs. Although the members of the wider ensemble herein do not consider crop-soil-management interactions, their sensitivity to nutrient supply indicates that findings for the EPIC-based sub-ensemble will likely become relevant for other GGCMs with the progressing inclusion of such processes.