Search Results

Now showing 1 - 3 of 3
  • Item
    Copper Iodide on Spacer Fabrics as Textile Thermoelectric Device for Energy Generation
    (Basel : MDPI, 2022) Schmidl, Gabriele; Jia, Guobin; Gawlik, Annett; Lorenz, Philipp; Zieger, Gabriel; Dellith, Jan; Diegel, Marco; Plentz, Jonathan
    The integration of electronic functionalities into textiles for use as wearable sensors, energy harvesters, or coolers has become increasingly important in recent years. A special focus is on efficient thermoelectric materials. Copper iodide as a p-type thermoelectrically active, nontoxic material is attractive for energy harvesting and energy generation because of its transparency and possible high-power factor. The deposition of CuI on polyester spacer fabrics by wet chemical processes represents a great potential for use in textile industry for example as flexible thermoelectric energy generators in the leisure or industrial sector as well as in medical technologies. The deposited material on polyester yarn is investigated by electron microscopy, x-ray diffraction and by thermoelectric measurements. The Seebeck coefficient was observed between 112 and 153 µV/K in a temperature range between 30 °C and 90 °C. It is demonstrated that the maximum output power reached 99 nW at temperature difference of 65.5 K with respect to room temperature for a single textile element. However, several elements can be connected in series and the output power can be linear upscaled. Thus, CuI coated on 3D spacer fabrics can be attractive to fabricate thermoelectric devices especially in the lower temperature range for textile medical or leisure applications.
  • Item
    Porous spherical gold nanoparticles via a laser induced process
    (Cambridge : Royal Society of Chemistry, 2022) Schmidl, Gabriele; Raugust, Marc; Jia, Guobin; Dellith, Andrea; Dellith, Jan; Schmidl, Frank; Plentz, Jonathan
    Nanoparticles consisting of a mixture of several metals and also porous nanoparticles due to their special structure exhibit properties that find applications in spectroscopic detection or catalysis. Different approaches of top down or bottom up technologies exist for the fabrication of such particles. We present a novel combined approach for the fabrication of spherical porous gold nanoparticles on low-cost glass substrates under ambient conditions using a UV-laser induced particle preparation process with subsequent wet chemical selective etching. In this preparation route, nanometer-sized branched structures are formed in spherical particles. The laser process, which is applied to a silver/gold bilayer system with different individual layer thicknesses, generates spherical mixed particles in a nanosecond range and influences the properties of the fabricated nanoparticles, such as the size and the mixture and thus the spectral response. The subsequent etching process is performed by selective wet chemical removal of silver from the nanoparticles with diluted nitric acid. The gold to silver ratio was investigated by energy-dispersive X-ray spectroscopy. The porosity depends on laser parameters and film thickness as well as on etching parameters such as time. After etching, the surface area of the remaining Au nanoparticles increases which makes these particles interesting for catalysis and also as carrier particles for substances. Such substances can be positioned at defined locations or be released in appropriate environments. Absorbance spectra are also analyzed to show how the altered fractured shape of the particles changes localized plasmon resonances of the resultingt particles.
  • Item
    Absolute EUV reflectivity measurements using a broadband high-harmonic source and an in situ single exposure reference scheme
    (Washington, DC : Soc., 2022) Abel, Johann J.; Wiesner, Felix; Nathanael, Jan; Reinhard, Julius; Wünsche, Martin; Schmidl, Gabriele; Gawlik, Annett; Hübner, Uwe; Plentz, Jonathan; Rödel, Christian; Paulus, Gerhard G.; Fuchs, Silvio
    We present a tabletop setup for extreme ultraviolet (EUV) reflection spectroscopy in the spectral range from 40 to 100 eV by using high-harmonic radiation. The simultaneous measurements of reference and sample spectra with high energy resolution provide precise and robust absolute reflectivity measurements, even when operating with spectrally fluctuating EUV sources. The stability and sensitivity of EUV reflectivity measurements are crucial factors for many applications in attosecond science, EUV spectroscopy, and nano-scale tomography. We show that the accuracy and stability of our in situ referencing scheme are almost one order of magnitude better in comparison to subsequent reference measurements. We demonstrate the performance of the setup by reflective near-edge x-ray absorption fine structure measurements of the aluminum L2/3 absorption edge in α-Al2O3 and compare the results to synchrotron measurements.