Search Results

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Item

Medical Gas Plasma Jet Technology Targets Murine Melanoma in an Immunogenic Fashion

2020, Bekeschus, Sander, Clemen, Ramona, Nießner, Felix, Sagwal, Sanjeev Kumar, Freund, Eric, Schmidt, Anke

Medical technologies from physics are imperative in the diagnosis and therapy of many types of diseases. In 2013, a novel cold physical plasma treatment concept was accredited for clinical therapy. This gas plasma jet technology generates large amounts of different reactive oxygen and nitrogen species (ROS). Using a melanoma model, gas plasma technology is tested as a novel anticancer agent. Plasma technology derived ROS diminish tumor growth in vitro and in vivo. Varying the feed gas mixture modifies the composition of ROS. Conditions rich in atomic oxygen correlate with killing activity and elevate intratumoral immune-infiltrates of CD8+ cytotoxic T-cells and dendritic cells. T-cells from secondary lymphoid organs of these mice stimulated with B16 melanoma cells ex vivo show higher activation levels as well. This correlates with immunogenic cancer cell death and higher calreticulin and heat-shock protein 90 expressions induced by gas plasma treatment in melanoma cells. To test the immunogenicity of gas plasma treated melanoma cells, 50% of mice vaccinated with these cells are protected from tumor growth compared to 1/6 and 5/6 mice negative control (mitomycin C) and positive control (mitoxantrone), respectively. Gas plasma jet technology is concluded to provide immunoprotection against malignant melanoma both in vitro and in vivo.

Loading...
Thumbnail Image
Item

Hyperspectral Imaging of Wounds Reveals Augmented Tissue Oxygenation following Cold Physical Plasma Treatment in Vivo

2021, Schmidt, Anke, Niesner, Felix, von Woedtke, Thomas, Bekeschus, Sander

Efficient vascularization of skin tissue supports wound healing in response to injury. This includes elevated blood circulation, tissue oxygenation, and perfusion. Cold physical plasma promotes wound healing in animal models and humans. Physical plasmas are multicomponent systems that generate several physicochemical effectors, such as ions, electrons, reactive oxygen and nitrogen species, and UV radiation. However, the consequences of plasma treatment on wound oxygenation and perfusion, vital processes to promote tissue regeneration, are largely unexplored. We used a novel hyperspectral imaging (HSI) system and a murine dermal full-thickness wound model in combination with kINPen argon plasma jet treatment to address this question. Plasma treatment promoted tissue oxygenation in superficial as well as deep (6 mm) layers of wound tissue. In addition to perfusion changes, we found a wound healing stage-dependent shift of tissue hemoglobin and tissue water index during reactive species-driven wound healing. Contactless, fast monitoring of medical parameters in real-time using HSI revealed a plasma-supporting effect in wound healing together with precise information about biological surface-specific features.