Search Results

Now showing 1 - 3 of 3
  • Item
    Measurements of Streams Agitated by Fluid Loaded SAW-devices Using a Volumetric 3-component Measurement Technique (V3V)
    (Amsterdam [u.a.] : Elsevier, 2015) Kiebert, Florian; König, Jörg; Kykal, Carsten; Schmidt, Hagen
    Utilizing surface acoustic waves (SAW) to induce tailored fluid motion via the acoustic streaming requires detailed knowledge about the acoustic bulk wave excitation. For the first time, the Defocus Digital Particle Image Velocimetry is used to measure the fluid motion originating from a fluid loaded SAW-device. With this flow measurement technique, the acoustic streaming-induced fluid motion can be observed volumetrically, which is attractive not only for application, but also for simulation in order to gain deeper insights regarding three-dimensional acoustic effects.
  • Item
    High-temperature electromechanical loss in piezoelectric langasite and catangasite crystals
    (Melville, NY : American Inst. of Physics, 2021) Suhak, Yuriy; Fritze, Holger; Sotnikov, Andrei; Schmidt, Hagen; Johnson, Ward L.
    Temperature-dependent acoustic loss Q−1 is studied in partially disordered langasite (LGS, La3Ga5SiO14) and ordered catangasite (CTGS, Ca3TaGa3Si2O14) crystals and compared with previously reported CTGS and langatate (LGT, La3Ga5.5Ta0.5O14) data. Two independent techniques, a contactless tone-burst excitation technique and contacting resonant piezoelectric spectroscopy, are used in this study. Contributions to the measured Q−1(T) are determined through fitting to physics-based functions, and the extracted fit parameters, including the activation energies of the processes, are discussed. It is shown that losses in LGS and CTGS are caused by a superposition of several mechanisms, including intrinsic phonon–phonon loss, point-defect relaxations, and conductivity-related relaxations.
  • Item
    Durability of TiAl based surface acoustic wave devices for sensing at intermediate high temperatures
    (Rio de Janeiro : Elsevier, 2023) Seifert, Marietta; Leszczynska, Barbara; Weser, Robert; Menzel, Siegfried; Gemming, Thomas; Schmidt, Hagen
    TiAl based surface acoustic wave (SAW) devices, which offer a promising cheap and easy to handle wireless sensor solution for intermediate high temperatures up to 600 °C, were prepared and investigated with respect to their durability. To obtain the devices, Ti/Al multilayers were deposited on high-temperature stable piezoelectric catangasite (CTGS) substrates and structured as electrodes via the lift-off technique. AlNO cover layers and barrier layers at the substrate site served as an oxidation protection. The devices were characterized regarding their electrical behavior by ex-situ measurements of their frequency characteristics after heat treatments up to 600 °C in air. In addition, long-term in situ measurements up to 570 °C were performed to analyze a possible drift of the resonant frequency in dependence on the temperature and time. Scanning electron microscopy of the surfaces of the devices and scanning transmission electron microscopy of cross sections of TiAl interdigital transducer electrode fingers and the contact pads were conducted to check the morphology of the electrode metallization and to reveal if degradation or oxidation processes occurred during the heat treatments. The results demonstrated a sufficient high-temperature stability of the TiAl based devices after a first conditioning of system. A linear dependence of the resonant frequency on the temperature of about −37 ppm/K was observed. In summary, the suitability of TiAl based SAW sensors for long-term application at intermediate temperatures was proven.