Search Results

Now showing 1 - 3 of 3
  • Item
    Orders of magnitude loss reduction in photonic bandgap fibers by engineering the core surround
    (Washington, DC : Soc., 2021) Upendar, S.; Ando, R.F.; Schmidt, M.A.; Weiss, T.
    We demonstrate how to reduce the loss in photonic bandgap fibers by orders of magnitude by varying the radius of the corner strands in the core surround. As a fundamental working principle we find that changing the corner strand radius can lead to backscattering of light into the fiber core. Selecting an optimal corner strand radius can thus reduce the loss of the fundamental core mode in a specific wavelength range by almost two orders of magnitude when compared to an unmodified cladding structure. Using the optimal corner radius for each transmission window, we observe the low-loss behavior for the first and second bandgaps, with the losses in the second bandgap being even lower than that of the first one. Our approach of reducing the confinement loss is conceptually applicable to all kinds of photonic bandgap fibers including hollow core and all-glass fibers as well as on-chip light cages. Therefore, our concept paves the way to low-loss light guidance in such systems with substantially reduced fabrication complexity.
  • Item
    A gold-nanotip optical fiber for plasmon-enhanced near-field detection
    (New York, NY : American Inst. of Physics, 2013) Uebel, P.; Bauerschmidt, S.T.; Schmidt, M.A.; Russell, P.St.J.
    A wet-chemical etching and mechanical cleaving technique is used to fabricate gold nanotips attached to tapered optical fibers. Localized surface plasmon resonances (tunable from 500 to 850 nm by varying the tip dimensions) are excited at the tip, and the signal is transmitted via the fiber to an optical analyzer, making the device a plasmon-enhanced near-field probe. A simple cavity model is used to explain the resonances observed in numerical simulations.
  • Item
    An ion trap built with photonic crystal fibre technology
    ([S.l.] : American Institute of Physics, 2015) Lindenfelser, F.; Keitch, B.; Kienzler, D.; Bykov, D.; Uebel, P.; Schmidt, M.A.; Russell, P.St.J.; Home, J.P.
    We demonstrate a surface-electrode ion trap fabricated using techniques transferred from the manufacture of photonic-crystal fibres. This provides a relatively straightforward route for realizing traps with an electrode structure on the 100 micron scale with high optical access. We demonstrate the basic functionality of the trap by cooling a single ion to the quantum ground state, allowing us to measure a heating rate from the ground state of 787 ± 24 quanta/s. Variation of the fabrication procedure used here may provide access to traps in this geometry with trap scales between 100 μm and 10 μm