Search Results

Now showing 1 - 10 of 16
Loading...
Thumbnail Image
Item

Fast, Label-Free Tracking of Single Viruses and Weakly Scattering Nanoparticles in a Nanofluidic Optical Fiber

2015, Faez, Sanli, Lahini, Yoav, Weidlich, Stefan, Garmann, Rees F., Wondraczek, Katrin, Zeisberger, Matthias, Schmidt, Markus A., Orrit, Michel, Manoharan, Vinothan N.

High-speed tracking of single particles is a gateway to understanding physical, chemical, and biological processes at the nanoscale. It is also a major experimental challenge, particularly for small, nanometer-scale particles. Although methods such as confocal or fluorescence microscopy offer both high spatial resolution and high signal-to-background ratios, the fluorescence emission lifetime limits the measurement speed, while photobleaching and thermal diffusion limit the duration of measurements. Here we present a tracking method based on elastic light scattering that enables long-duration measurements of nanoparticle dynamics at rates of thousands of frames per second. We contain the particles within a single-mode silica fiber having a subwavelength, nanofluidic channel and illuminate them using the fiber's strongly confined optical mode. The diffusing particles in this cylindrical geometry are continuously illuminated inside the collection focal plane. We show that the method can track unlabeled dielectric particles as small as 20 nm as well as individual cowpea chlorotic mottle virus (CCMV) virions-26 nm in size and 4.6 megadaltons in mass-at rates of over 3 kHz for durations of tens of seconds. Our setup is easily incorporated into common optical microscopes and extends their detection range to nanometer-scale particles and macromolecules. The ease-of-use and performance of this technique support its potential for widespread applications in medical diagnostics and micro total analysis systems.

Loading...
Thumbnail Image
Item

Impact of deuteration on the ultrafast nonlinear optical response of toluene and nitrobenzene

2019, Karras, Christian, Chemnitz, Mario, Heintzmann, Rainer, Schmidt, Markus A.

Nonlinear pulse propagation inside highly nonlinear media requires accurate knowledge on the temporal response function of the materials used particular in the case of liquids. Here we study the impact of deuteration on the ultrafast dynamics of toluene and nitrobenzene via all optical Kerr gating, showing substantially different electronic and molecular contributions, which was quantified by fitting a multichannel decay model to the data points. Specifically we found that deuteration imposes the time-integrated nonlinearities to reduce particular for toluene which could be caused by both reduced electronic hyperpolarizabilities as well as weaker intermolecular interactions. The results achieved reveal that deuterated organic solvents represent promising materials for infrared photonics since they offer extended infrared transmission compared to their non-deuterated counterparts while maintained strong nonlinear responses.

Loading...
Thumbnail Image
Item

Photonic candle – focusing light using nano-bore optical fibers

2018, Schneidewind, Henrik, Zeisberger, Matthias, Plidschun, Malte, Weidlich, Stefan, Schmidt, Markus A.

Focusing light represents one of the fundamental optical functionalities that is used in a countless number of situations. Here we introduce the concept of nano-bore optical fiber mediated light focusing that allows to efficiently focus light at micrometer distance from the fiber end face. Since the focusing effect is provided by the fundamental fiber mode, device implementation is extremely straightforward since no post-processing or nano-structuring is necessary. Far-field measurements on implemented fibers, simulations, and a dual-Gaussian beam toy model confirm the validity of the concept. Due to its unique properties such as strong light localization, a close to 100% implementation success rate, extremely high reproducibility, and its compatibility with current fiber circuitry, the concept will find application in numerous areas that demand to focus at remote distances.

Loading...
Thumbnail Image
Item

Approximate model for analyzing band structures of single-ring hollow-core anti-resonant fibers

2019, Fatobene Ando, Ron, Hartung, Alexander, Jang, Bumjoon, Schmidt, Markus A.

Precise knowledge of modal behavior is of essential importance for understanding light guidance, particularly in hollow-core fibers. Here we present a semi-analytical model that allows determination of bands formed in revolver-type anti-resonant hollow-core fibers. The approach is independent of the actual arrangement of the anti-resonant elements, does not enforce artificial lattice arrangements and allows determination of the effective indices of modes of preselected order. The simulations show two classes of modes: (i) low-order modes exhibiting effective indices with moderate slopes and (ii) a high number of high-order modes with very strong effective index dispersion, forming a quasi-continuum of modes. It is shown that the mode density scales with the square of the normalized frequency, being to some extent similar to the behavior of multimode fibers.

Loading...
Thumbnail Image
Item

Fluoride-Sulfophosphate/Silica Hybrid Fiber as a Platform for Optically Active Materials

2019, Wang, Wei-Chao, Yang, Xu, Wieduwilt, Torsten, Schmidt, Markus A., Zhang, Qin-Yuan, Wondraczek, Lothar

Pressure-assisted melt filling (PAMF) of pre-fabricated micro-capillaries has been proven an effective way of fabricating hybrid optical fiber (HOF) from unusual combinations of materials. Here, we extend the applicability of PAMF to multi-anionic fluoride-sulfophosphate (FPS) glasses. FPS glasses provide extended transmission windows and high solubility for various transition metal (TM) and rare earth (RE) ion species. Using PAMF for fabricating FPS/silica HOFs can therefore act as a platform for a broad variety of optically active fiber devices. For the present demonstration purposes, we selected Cr3+- and Mn2+-doped FPS. For both glasses, we demonstrate how the spectral characteristics of the bulk material persist also in the HOF. Using a double-core fiber structure in which waveguiding is conducted in a primary GeO2-SiO2 core, mode coupling to the secondary FPS-filled core allows one to exploit the optical activity of the doped FPS glass even when the intrinsic optical loss is high.Pressure-assisted melt filling (PAMF) of pre-fabricated micro-capillaries has been proven an effective way of fabricating hybrid optical fiber (HOF) from unusual combinations of materials. Here, we extend the applicability of PAMF to multi-anionic fluoride-sulfophosphate (FPS) glasses. FPS glasses provide extended transmission windows and high solubility for various transition metal (TM) and rare earth (RE) ion species. Using PAMF for fabricating FPS/silica HOFs can therefore act as a platform for a broad variety of optically active fiber devices. For the present demonstration purposes, we selected Cr3+- and Mn2+-doped FPS. For both glasses, we demonstrate how the spectral characteristics of the bulk material persist also in the HOF. Using a double-core fiber structure in which waveguiding is conducted in a primary GeO2-SiO2 core, mode coupling to the secondary FPS-filled core allows one to exploit the optical activity of the doped FPS glass even when the intrinsic optical loss is high.

Loading...
Thumbnail Image
Item

Nanotrimer enhanced optical fiber tips implemented by electron beam lithography

2018, Wang, Ning, Zeisberger, Matthias, Hübner, Uwe, Schmidt, Markus A.

Here we present a novel fabrication approach that allows for the implementation of sophisticated planar nanostructures with deep subwavelength dimensions on fiber end faces by electron beam lithography. Specifically, we planarize the end faces of fiber bundles such that they are compatible with planar nanostructuring technology, with the result that fibers can be treated in the same way as typical wafers, opening up the entire field of nanotechnology for fiber optics. To demonstrate our approach, we have implemented densely-packed arrays of gold nanotrimers on the end face of 50 cm long standard single mode fibers, showing asymmetrical resonance lineshapes that arise due to the interplay of diffractive coupling of the individual timer response at infrared wavelengths that overlap with the single mode regime of typical telecommunication fibers. Refractive index sensing experiments suggest sensitivities of about 390 nm/RIU, representing the state-of-the-art for such a device type. Due to its unique capability of making optical fibers compatible with planar nanostructuring technology, we anticipate our approach to be applied in numerous fields including bioanalytics, telecommunications, nonlinear photonics, optical trapping and beam shaping.

Loading...
Thumbnail Image
Item

Thermodynamical control of soliton dynamics in liquid-core fibers

2018, Chemnitz, Mario, Gaida, Christian, Gebhardt, Martin, Stutzki, Fabian, Kobelke, Jens, Tünnermann, Andreas, Limpert, Jens, Schmidt, Markus A.

Liquid-core fibers offer local external control over pulse dispersion due to their strong thermodynamic response, offering a new degree of freedom in accurate soliton steering for reconfigurable nonlinear light generation. Here, we show how to accurately control soliton dynamics and supercontinuum generation in carbon disulfide/silica fibers by temperature and pressure tuning, monitored via the spectral location and the onset energy of non-solitonic radiation. Simulations and phase-matching calculations based on an extended thermodynamic dispersion model of carbon disulfide confirm the experimental results, which allows us to demonstrate the potential of temperature detuning of liquid-core fibers for octave spanning recompressible supercontinuum generation in the near-infrared.

Loading...
Thumbnail Image
Item

Understanding Dispersion of Revolver-Type Anti-Resonant Hollow Core Fibers

2018, Zeisberger, Matthias, Hartung, Alexander, Schmidt, Markus A.

Here, we analyze the dispersion behavior of revolver-type anti-resonant hollow core fibers, revealing that the chromatic dispersion of this type of fiber geometry is dominated by the resonances of the glass annuluses, whereas the actual arrangement of the anti-resonant microstructure has a minor impact. Based on these findings, we show that the dispersion behavior of the fundamental core mode can be approximated by that of a tube-type fiber, allowing us to derive analytic expressions for phase index, group-velocity dispersion and zero-dispersion wavelength. The resulting equations and simulations reveal that the emergence of zero group velocity dispersion in anti-resonant fibers is fundamentally associated with the adjacent annulus resonance which can be adjusted mainly via the glass thickness of the anti-resonant elements. Due to their generality and the straightforward applicability, our findings will find application in all fields addressing controlling and engineering of pulse dispersion in anti-resonant hollow core fibers.

Loading...
Thumbnail Image
Item

Carbon chloride-core fibers for soliton mediated supercontinuum generation

2018, Chemnitz, Mario, Gaida, Christian, Gebhardt, Martin, Stutzki, Fabian, Kobelke, Jens, Tünnermann, Andreas, Limpert, Jens, Schmidt, Markus A.

We report on soliton-fission mediated infrared supercontinuum generation in liquid-core step-index fibers using highly transparent carbon chlorides (CCl4, C2Cl4). By developing models for the refractive index dispersions and nonlinear response functions, dispersion engineering and pumping with an ultrafast thulium fiber laser (300 fs) at 1.92 μm, distinct soliton fission and dispersive wave generation was observed, particularly in the case of tetrachloroethylene (C2Cl4). The measured results match simulations of both the generalized and a hybrid nonlinear Schrödinger equation, with the latter resembling the characteristics of non-instantaneous medium via a static potential term and representing a simulation tool with substantially reduced complexity. We show that C2Cl4 has the potential for observing non-instantaneous soliton dynamics along meters of liquid-core fiber opening a feasible route for directly observing hybrid soliton dynamics.

Loading...
Thumbnail Image
Item

Analytical mode normalization and resonant state expansion for optical fibers - an efficient tool to model transverse disorder

2018, Upendar, S., Allayarov, I., Schmidt, Markus A., Weiss, Thomas

We adapt the resonant state expansion to optical fibers such as capillary and photonic crystal fibers. As a key requirement of the resonant state expansion and any related perturbative approach, we derive the correct analytical normalization for all modes of these fiber structures, including leaky modes that radiate energy perpendicular to the direction of propagation and have fields that grow with distance from the fiber core. Based on the normalized fiber modes, an eigenvalue equation is derived that allows for calculating the influence of small and large perturbations such as structural disorder on the guiding properties. This is demonstrated for two test systems: a capillary fiber and a photonic crystal fiber.