Search Results

Now showing 1 - 10 of 33
Loading...
Thumbnail Image
Item

Fast, Label-Free Tracking of Single Viruses and Weakly Scattering Nanoparticles in a Nanofluidic Optical Fiber

2015, Faez, Sanli, Lahini, Yoav, Weidlich, Stefan, Garmann, Rees F., Wondraczek, Katrin, Zeisberger, Matthias, Schmidt, Markus A., Orrit, Michel, Manoharan, Vinothan N.

High-speed tracking of single particles is a gateway to understanding physical, chemical, and biological processes at the nanoscale. It is also a major experimental challenge, particularly for small, nanometer-scale particles. Although methods such as confocal or fluorescence microscopy offer both high spatial resolution and high signal-to-background ratios, the fluorescence emission lifetime limits the measurement speed, while photobleaching and thermal diffusion limit the duration of measurements. Here we present a tracking method based on elastic light scattering that enables long-duration measurements of nanoparticle dynamics at rates of thousands of frames per second. We contain the particles within a single-mode silica fiber having a subwavelength, nanofluidic channel and illuminate them using the fiber's strongly confined optical mode. The diffusing particles in this cylindrical geometry are continuously illuminated inside the collection focal plane. We show that the method can track unlabeled dielectric particles as small as 20 nm as well as individual cowpea chlorotic mottle virus (CCMV) virions-26 nm in size and 4.6 megadaltons in mass-at rates of over 3 kHz for durations of tens of seconds. Our setup is easily incorporated into common optical microscopes and extends their detection range to nanometer-scale particles and macromolecules. The ease-of-use and performance of this technique support its potential for widespread applications in medical diagnostics and micro total analysis systems.

Loading...
Thumbnail Image
Item

Publisher Correction: Coherent interaction of atoms with a beam of light confined in a light cage

2021, Davidson-Marquis, Flavie, Gargiulo, Julian, Gómez-López, Esteban, Jang, Bumjoon, Kroh, Tim, Müller, Chris, Ziegler, Mario, Maier, Stefan A., Kübler, Harald, Schmidt, Markus A., Benson, Oliver

[no abstract available: correction of https://doi.org/10.1038/s41377-021-00556-z published online 31 May 2021; After publication of this article, it is noticed the article contained an error. In Table 1, the data in the line ‘Length (mm)’ is missing. The complete Table 1 is provided in this correction.]

Loading...
Thumbnail Image
Item

Supercontinuum generation in a carbon disulfide core microstructured optical fiber

2021, Junaid, Saher, Bierlich, Joerg, Hartung, Alexander, Meyer, Tobias, Chemnitz, Mario, Schmidt, Markus A.

We demonstrate supercontinuum generation in a liquid-core microstructured optical fiber using carbon disulfide as the core material. The fiber provides a specific dispersion landscape with a zero-dispersion wavelength approaching the telecommunication domain where the corresponding capillary-type counterpart shows unsuitable dispersion properties for soliton fission. The experiments were conducted using two pump lasers with different pulse duration (30 fs and 90 fs) giving rise to different non-instantaneous contributions of carbon disulfide in each case. The presented results demonstrate an extraordinary high conversion efficiency from pump to soliton and to dispersive wave, overall defining a platform that enables studying the impact of non-instantaneous responses on ultrafast soliton dynamics and coherence using straightforward pump lasers and diagnostics.

Loading...
Thumbnail Image
Item

Coherent interaction of atoms with a beam of light confined in a light cage

2021, Davidson-Marquis, Flavie, Gargiulo, Julian, Gómez-López, Esteban, Jang, Bumjoon, Kroh, Tim, Müller, Chris, Ziegler, Mario, Maier, Stefan A., Kübler, Harald, Schmidt, Markus A., Benson, Oliver

Controlling coherent interaction between optical fields and quantum systems in scalable, integrated platforms is essential for quantum technologies. Miniaturised, warm alkali-vapour cells integrated with on-chip photonic devices represent an attractive system, in particular for delay or storage of a single-photon quantum state. Hollow-core fibres or planar waveguides are widely used to confine light over long distances enhancing light-matter interaction in atomic-vapour cells. However, they suffer from inefficient filling times, enhanced dephasing for atoms near the surfaces, and limited light-matter overlap. We report here on the observation of modified electromagnetically induced transparency for a non-diffractive beam of light in an on-chip, laterally-accessible hollow-core light cage. Atomic layer deposition of an alumina nanofilm onto the light-cage structure was utilised to precisely tune the high-transmission spectral region of the light-cage mode to the operation wavelength of the atomic transition, while additionally protecting the polymer against the corrosive alkali vapour. The experiments show strong, coherent light-matter coupling over lengths substantially exceeding the Rayleigh range. Additionally, the stable non-degrading performance and extreme versatility of the light cage provide an excellent basis for a manifold of quantum-storage and quantum-nonlinear applications, highlighting it as a compelling candidate for all-on-chip, integrable, low-cost, vapour-based photon delay.

Loading...
Thumbnail Image
Item

Advanced fiber in-coupling through nanoprinted axially symmetric structures

2023, Yermakov, Oleh, Zeisberger, Matthias, Schneidewind, Henrik, Kim, Jisoo, Bogdanov, Andrey, Kivshar, Yuri, Schmidt, Markus A.

Here, we introduce and demonstrate nanoprinted all-dielectric nanostructures located on fiber end faces as a novel concept for the efficient coupling of light into optical fibers, especially at multiple incidence angles and across large angular intervals. Taking advantage of the unique properties of the nanoprinting technology, such as flexibly varying the width, height, and gap distance of each individual element, we realize different polymeric axial-symmetric structures, such as double-pitch gratings and aperiodic arrays, placed on the facet of commercial step-index fibers. Of particular note is the aperiodic geometry, enabling an unprecedentedly high average coupling efficiency across the entire angular range up to 80°, outperforming regular gratings and especially bare fibers by orders of magnitude. The excellent agreement between simulation and experiment clearly demonstrates the quality of the fabricated structures and the high accuracy of the nanoprinting process. Our approach enables realizing highly integrated and ready-to-use fiber devices, defining a new class of compact, flexible, and practically relevant all-fiber devices beyond the state-of-art. Applications can be found in a variety of cutting-edge fields that require highly efficient light collection over selected angular intervals, such as endoscopy or quantum technologies. Furthermore, fiber functionalization through nanoprinting represents a promising approach for interfacing highly complex functional photonic structures with optical fibers.

Loading...
Thumbnail Image
Item

Nanograting-Enhanced Optical Fibers for Visible and Infrared Light Collection at Large Input Angles

2021, Wang, Ning, Zeisberger, Matthias, Hübner, Uwe, Schmidt, Markus A.

The efficient incoupling of light into particular fibers at large angles is essential for a multitude of applications; however, this is difficult to achieve with commonly used fibers due to low numerical aperture. Here, we demonstrate that commonly used optical fibers functionalized with arrays of metallic nanodots show substantially improved large-angle light-collection performances at multiple wavelengths. In particular, we show that at visible wavelengths, higher diffraction orders contribute significantly to the light-coupling efficiency, independent of the incident polarization, with a dominant excitation of the fundamental mode. The experimental observation is confirmed by an analytical model, which directly suggests further improvement in incoupling efficiency through the use of powerful nanostructures such as metasurface or dielectric gratings. Therefore, our concept paves the way for high-performance fiber-based optical devices and is particularly relevant within the context of endoscopic-type applications in life science and light collection within quantum technology.

Loading...
Thumbnail Image
Item

Resonance-Induced Dispersion Tuning for Tailoring Nonsolitonic Radiation via Nanofilms in Exposed Core Fibers

2020, Lühder, Tilman A.K., Schaarschmidt, Kay, Goerke, Sebastian, Schartner, Erik P., Ebendorff-Heidepriem, Heike, Schmidt, Markus A.

Efficient supercontinuum generation demands for fine-tuning of the dispersion of the underlying waveguide. Resonances introduced into waveguide systems can substantially improve nonlinear dynamics in ultrafast supercontinuum generation via modal hybridization and formation of avoided crossings. Using the example of exposed core fibers functionalized by nanofilms with sub-nanometer precision both zero-dispersion and dispersive wave emission wavelengths are shifted by 227 and 300 nm, respectively, at tuning slopes higher than 20 nm/nm. The presented concept relies on dispersion management via induced resonances and can be straightforwardly extended to other deposition techniques and film geometries such as multilayers or 2D materials. It allows for the creation of unique dispersion landscapes, thus tailoring nonlinear dynamics and emission wavelengths and for making otherwise unsuitable waveguides relevant for ultrafast nonlinear photonics. © 2020 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

Loading...
Thumbnail Image
Item

Understanding Nonlinear Pulse Propagation in Liquid Strand-Based Photonic Bandgap Fibers

2021, Qi, Xue, Schaarschmidt, Kay, Li, Guangrui, Junaid, Saher, Scheibinger, Ramona, Lühder, Tilman, Schmidt, Markus A.

Ultrafast supercontinuum generation crucially depends on the dispersive properties of the underlying waveguide. This strong dependency allows for tailoring nonlinear frequency conversion and is particularly relevant in the context of waveguides that include geometry-induced resonances. Here, we experimentally uncovered the impact of the relative spectral distance between the pump and the bandgap edge on the supercontinuum generation and in particular on the dispersive wave formation on the example of a liquid strand-based photonic bandgap fiber. In contrast to its air-hole-based counterpart, a bandgap fiber shows a dispersion landscape that varies greatly with wavelength. Particularly due to the strong dispersion variation close to the bandgap edges, nanometer adjustments of the pump wavelength result in a dramatic change of the dispersive wave generation (wavelength and threshold). Phase-matching considerations confirm these observations, additionally revealing the relevance of third order dispersion for interband energy transfer. The present study provides additional insights into the nonlinear frequency conversion of resonance-enhanced waveguide systems which will be relevant for both understanding nonlinear processes as well as for tailoring the spectral output of nonlinear fiber sources.

Loading...
Thumbnail Image
Item

Ultrafast intermodal third harmonic generation in a liquid core step-index fiber filled with C2Cl4: erratum

2021, Schaarschmidt, Kay, Kobelke, Jens, Nolte, Stefan, Meyer, Tobias, Schmidt, Markus A.

We provide a correction due to an erroneous repetition rate of one of the laser systems (90 fs pulse duration) in our previously published paper [Opt. Express28, 25037 (2020)10.1364/OE.399771].

Loading...
Thumbnail Image
Item

Numerical and Experimental Demonstration of Intermodal Dispersive Wave Generation

2021, Lüpken, Niklas M., Timmerkamp, Maximilian, Scheibinger, Ramona, Schaarschmidt, Kay, Schmidt, Markus A., Boller, Klaus‐J., Fallnich, Carsten

Evidence of intermodal dispersive wave generation mediated by intermodal cross-phase modulation (iXPM) between different transverse modes during supercontinuum generation in silicon nitride waveguides is presented. The formation of a higher-order soliton in one strong transverse mode leads to phase modulation of a second, weak transverse mode by iXPM. The phase modulation enables not only supercontinuum generation but also dispersive wave generation within the weak mode, that otherwise has insufficient power to facilitate dispersive wave formation. The nonlinear frequency conversion scheme presented here suggests phase-matching conditions beyond what is currently known, which can be exploited for extending the spectral bandwidth within supercontinuum generation.