Search Results

Now showing 1 - 2 of 2
  • Item
    Hybrid soliton dynamics in liquid-core fibres
    (Berlin : Nature Pulishing, 2017) Chemnitz, Mario; Gebhardt, Martin; Gaida, Christian; Stutzki, Fabian; Kobelke, Jens; Limpert, Jens; Tünnermann, Andreas; Schmidt, Markus A.
    The discovery of optical solitons being understood as temporally and spectrally stationary optical states has enabled numerous innovations among which, most notably, supercontinuum light sources have become widely used in both fundamental and applied sciences. Here, we report on experimental evidence for dynamics of hybrid solitons—a new type of solitary wave, which emerges as a result of a strong non-instantaneous nonlinear response in CS2-filled liquid-core optical fibres. Octave-spanning supercontinua in the mid-infrared region are observed when pumping the hybrid waveguide with a 460 fs laser (1.95 μm) in the anomalous dispersion regime at nanojoule-level pulse energies. A detailed numerical analysis well correlated with the experiment uncovers clear indicators of emerging hybrid solitons, revealing their impact on the bandwidth, onset energy and noise characteristics of the supercontinua. Our study highlights liquid-core fibres as a promising platform for fundamental optics and applications towards novel coherent and reconfigurable light sources.
  • Item
    Analytic model for the complex effective index of the leaky modes of tube-type anti-resonant hollow core fibers
    (Berlin : Nature Pulishing, 2017) Zeisberger, Matthias; Schmidt, Markus A.
    Due to their promising applications, hollow-core fibers, in particular, their anti-resonant versions, have recently attracted the attention of the photonics community. Here, we introduce a model that approximates, using the reflection of a wave on a single planar film, modal guidance in tube-type anti-resonant waveguides whose core diameters are large compared to the wavelength. The model yields analytic expressions for the real and imaginary parts of the complex effective index of the leaky modes supported, and is valid in all practically relevant situations, excellently matching all the important dispersion and loss parameters. Essential principles such as the fourth power dependence of the modal loss on the core radius at all wavelengths and the geometry-independent transition refractive index, below which modal discrimination favors the fundamental mode are discussed. As application examples, we use our model for understanding higher-order mode suppression in revolver-type fibers and for uncovering the tuning capabilities associated with nonlinear pulse propagation.