Search Results

Now showing 1 - 10 of 41
Loading...
Thumbnail Image
Item

Numerical and Experimental Demonstration of Intermodal Dispersive Wave Generation

2021, Lüpken, Niklas M., Timmerkamp, Maximilian, Scheibinger, Ramona, Schaarschmidt, Kay, Schmidt, Markus A., Boller, Klaus‐J., Fallnich, Carsten

Evidence of intermodal dispersive wave generation mediated by intermodal cross-phase modulation (iXPM) between different transverse modes during supercontinuum generation in silicon nitride waveguides is presented. The formation of a higher-order soliton in one strong transverse mode leads to phase modulation of a second, weak transverse mode by iXPM. The phase modulation enables not only supercontinuum generation but also dispersive wave generation within the weak mode, that otherwise has insufficient power to facilitate dispersive wave formation. The nonlinear frequency conversion scheme presented here suggests phase-matching conditions beyond what is currently known, which can be exploited for extending the spectral bandwidth within supercontinuum generation.

Loading...
Thumbnail Image
Item

Coherent interaction of atoms with a beam of light confined in a light cage

2021, Davidson-Marquis, Flavie, Gargiulo, Julian, Gómez-López, Esteban, Jang, Bumjoon, Kroh, Tim, Müller, Chris, Ziegler, Mario, Maier, Stefan A., Kübler, Harald, Schmidt, Markus A., Benson, Oliver

Controlling coherent interaction between optical fields and quantum systems in scalable, integrated platforms is essential for quantum technologies. Miniaturised, warm alkali-vapour cells integrated with on-chip photonic devices represent an attractive system, in particular for delay or storage of a single-photon quantum state. Hollow-core fibres or planar waveguides are widely used to confine light over long distances enhancing light-matter interaction in atomic-vapour cells. However, they suffer from inefficient filling times, enhanced dephasing for atoms near the surfaces, and limited light-matter overlap. We report here on the observation of modified electromagnetically induced transparency for a non-diffractive beam of light in an on-chip, laterally-accessible hollow-core light cage. Atomic layer deposition of an alumina nanofilm onto the light-cage structure was utilised to precisely tune the high-transmission spectral region of the light-cage mode to the operation wavelength of the atomic transition, while additionally protecting the polymer against the corrosive alkali vapour. The experiments show strong, coherent light-matter coupling over lengths substantially exceeding the Rayleigh range. Additionally, the stable non-degrading performance and extreme versatility of the light cage provide an excellent basis for a manifold of quantum-storage and quantum-nonlinear applications, highlighting it as a compelling candidate for all-on-chip, integrable, low-cost, vapour-based photon delay.

Loading...
Thumbnail Image
Item

On-chip fluorescence detection using photonic bandgap guiding optofluidic hollow-core light cage

2022, Kim, Jisoo, Jang, Bumjoon, Wieduwilt, Torsten, Warren-Smith, Stephen C., Bürger, Johannes, Maier, Stefan A., Schmidt, Markus A.

The on-chip detection of fluorescent light is essential for many bioanalytical and life-science related applications. Here, the optofluidic light cage consisting of a sparse array of micrometer encircling a hollow core represents an innovative concept, particularly for on-chip waveguide-based spectroscopy. In the present work, we demonstrate the potential of the optofluidic light cage concept in the context of integrated on-chip fluorescence spectroscopy. Specifically, we show that fluorescent light from a dye-doped aqueous solution generated in the core of a nanoprinted dual-ring light cage can be efficiently captured and guided to the waveguide ports. Notably, the fluorescence collection occurs predominantly in the fundamental mode, a property that distinguishes it from evanescent field-based waveguide detection schemes that favor collection in higher-order modes. Through exploiting the flexibility of waveguide design and 3D nanoprinting, both excitation and emission have been localized in the high transmission domains of the fundamental core mode. Fast diffusion, detection limits comparable to bulk measurements, and the potential of this approach in terms of device integration were demonstrated. Together with previous results on absorption spectroscopy, the achievements presented here suggest that the optofluidic light cage concept defines a novel photonic platform for integrated on-chip spectroscopic devices and real-time sensors compatible with both the fiber circuitry and microfluidics. Applications in areas such as bioanalytics and environmental sciences are conceivable, while more sophisticated applications such as nanoparticle tracking analysis and integrated Raman spectroscopy could be envisioned,

Loading...
Thumbnail Image
Item

Resonance-Induced Dispersion Tuning for Tailoring Nonsolitonic Radiation via Nanofilms in Exposed Core Fibers

2020, Lühder, Tilman A.K., Schaarschmidt, Kay, Goerke, Sebastian, Schartner, Erik P., Ebendorff-Heidepriem, Heike, Schmidt, Markus A.

Efficient supercontinuum generation demands for fine-tuning of the dispersion of the underlying waveguide. Resonances introduced into waveguide systems can substantially improve nonlinear dynamics in ultrafast supercontinuum generation via modal hybridization and formation of avoided crossings. Using the example of exposed core fibers functionalized by nanofilms with sub-nanometer precision both zero-dispersion and dispersive wave emission wavelengths are shifted by 227 and 300 nm, respectively, at tuning slopes higher than 20 nm/nm. The presented concept relies on dispersion management via induced resonances and can be straightforwardly extended to other deposition techniques and film geometries such as multilayers or 2D materials. It allows for the creation of unique dispersion landscapes, thus tailoring nonlinear dynamics and emission wavelengths and for making otherwise unsuitable waveguides relevant for ultrafast nonlinear photonics. © 2020 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

Loading...
Thumbnail Image
Item

Nanograting-Enhanced Optical Fibers for Visible and Infrared Light Collection at Large Input Angles

2021, Wang, Ning, Zeisberger, Matthias, Hübner, Uwe, Schmidt, Markus A.

The efficient incoupling of light into particular fibers at large angles is essential for a multitude of applications; however, this is difficult to achieve with commonly used fibers due to low numerical aperture. Here, we demonstrate that commonly used optical fibers functionalized with arrays of metallic nanodots show substantially improved large-angle light-collection performances at multiple wavelengths. In particular, we show that at visible wavelengths, higher diffraction orders contribute significantly to the light-coupling efficiency, independent of the incident polarization, with a dominant excitation of the fundamental mode. The experimental observation is confirmed by an analytical model, which directly suggests further improvement in incoupling efficiency through the use of powerful nanostructures such as metasurface or dielectric gratings. Therefore, our concept paves the way for high-performance fiber-based optical devices and is particularly relevant within the context of endoscopic-type applications in life science and light collection within quantum technology.

Loading...
Thumbnail Image
Item

Carbon chloride-core fibers for soliton mediated supercontinuum generation

2018, Chemnitz, Mario, Gaida, Christian, Gebhardt, Martin, Stutzki, Fabian, Kobelke, Jens, Tünnermann, Andreas, Limpert, Jens, Schmidt, Markus A.

We report on soliton-fission mediated infrared supercontinuum generation in liquid-core step-index fibers using highly transparent carbon chlorides (CCl4, C2Cl4). By developing models for the refractive index dispersions and nonlinear response functions, dispersion engineering and pumping with an ultrafast thulium fiber laser (300 fs) at 1.92 μm, distinct soliton fission and dispersive wave generation was observed, particularly in the case of tetrachloroethylene (C2Cl4). The measured results match simulations of both the generalized and a hybrid nonlinear Schrödinger equation, with the latter resembling the characteristics of non-instantaneous medium via a static potential term and representing a simulation tool with substantially reduced complexity. We show that C2Cl4 has the potential for observing non-instantaneous soliton dynamics along meters of liquid-core fiber opening a feasible route for directly observing hybrid soliton dynamics.

Loading...
Thumbnail Image
Item

Ultrathin niobium nanofilms on fiber optical tapers--a new route towards low-loss hybrid plasmonic modes

2015, Wieduwilt, Torsten, Tuniz, Alessandro, Linzen, Sven, Goerke, Sebastian, Dellith, Jan, Hübner, Uwe, Schmidt, Markus A.

Due to the ongoing improvement in nanostructuring technology, ultrathin metallic nanofilms have recently gained substantial attention in plasmonics, e.g. as building blocks of metasurfaces. Typically, noble metals such as silver or gold are the materials of choice, due to their excellent optical properties, however they also possess some intrinsic disadvantages. Here, we introduce niobium nanofilms (~10 nm thickness) as an alternate plasmonic platform. We demonstrate functionality by depositing a niobium nanofilm on a plasmonic fiber taper and observe a dielectric-loaded niobium surface-plasmon excitation for the first time, with a modal attenuation of only 3–4 dB/mm in aqueous environment and a refractive index sensitivity up to 15 μm/RIU if the analyte index exceeds 1.42. We show that the niobium nanofilm possesses bulk optical properties, is continuous, homogenous and inert against any environmental influence, thus possessing several superior properties compared to noble metal nanofilms. These results demonstrate that ultrathin niobium nanofilms can serve as a new platform for biomedical diagnostics, superconducting photonics, ultrathin metasurfaces or new types of optoelectronic devices.

Loading...
Thumbnail Image
Item

Fiber-integrated hollow-core light cage for gas spectroscopy

2021, Jang, Bumjoon, Gargiulo, Julian, Kim, Jisoo, Bürger, Johannes, Both, Steffen, Lehmann, Hartmut, Wieduwilt, Torsten, Weiss, Thomas, Maier, Stefan A., Schmidt, Markus A.

Interfacing integrated on-chip waveguides with spectroscopic approaches represents one research direction within current photonics aiming at reducing geometric footprints and increasing device densities. Particularly relevant is to connect chip-integrated waveguides with established fiber-based circuitry, opening up the possibility for a new class of devices within the field of integrated photonics. Here, one attractive waveguide is the on-chip light cage, confining and guiding light in a low-index core through the anti-resonance effect. This waveguide, implemented via 3D nanoprinting and reaching nearly 100% overlap of mode and material of interest, uniquely provides side-wise access to the core region through the open spaces between the cage strands, drastically reducing gas diffusion times. Here, we extend the capabilities of the light cage concept by interfacing light cages and optical fibers, reaching a fully fiber-integrated on-chip waveguide arrangement with its spectroscopic capabilities demonstrated here on the example of tunable diode laser absorption spectroscopy of ammonia. Controlling and optimizing the fiber circuitry integration have been achieved via automatic alignment in etched v-grooves on silicon chips. This successful device integration via 3D nanoprinting highlights the fiber-interfaced light cage to be an attractive waveguide platform for a multitude of spectroscopy-related fields, including bio-analytics, lab-on-chip photonic sensing, chemistry, and quantum metrology. © 2021 Author(s).

Loading...
Thumbnail Image
Item

Fiber-based 3D nano-printed holography with individually phase-engineered remote points

2022, Plidschun, Malte, Zeisberger, Matthias, Kim, Jisoo, Wieduwilt, Torsten, Schmidt, Markus A.

The generation of tailored light fields with spatially controlled intensity and phase distribution is essential in many areas of science and application, while creating such patterns remotely has recently defined a key challenge. Here, we present a fiber-compatible concept for the remote generation of complex multi-foci three-dimensional intensity patterns with adjusted relative phases between individual foci. By extending the well-known Huygens principle, we demonstrate, in simulations and experiments, that our interference-based approach enables controlling of both intensity and phase of individual focal points in an array of spots distributed in all three spatial directions. Holograms were implemented using 3D nano-printing on planar substrates and optical fibers, showing excellent agreement between design and implemented structures. In addition to planar substrates, holograms were also generated on modified single-mode fibers, creating intensity distributions consisting of about 200 individual foci distributed over multiple image planes. The presented scheme yields an innovative pathway for phase-controlled 3D digital holography over remote distances, yielding an enormous potential application in fields such as quantum technology, life sciences, bioanalytics and telecommunications. Overall, all fields requiring precise excitation of higher-order optical resonances, including nanophotonics, fiber optics and waveguide technology, will benefit from the concept.

Loading...
Thumbnail Image
Item

Nanoboomerang-based inverse metasurfaces - a promising path towards ultrathin photonic devices for transmission operation

2017, Zeisberger, Matthias, Schneidewind, Henrik, Hübner, Uwe, Popp, Jürgen, Schmidt, Markus A.

Metasurfaces have revolutionized photonics due to their ability to shape phase fronts as requested and to tune beam directionality using nanoscale metallic or dielectric scatterers. Here we reveal inverse metasurfaces showing superior properties compared to their positive counterparts if transmission mode operation is considered. The key advantage of such slot-type metasurfaces is the strong reduction of light in the parallel-polarization state, making the crossed-polarization, being essential for metasurface operation, dominant and highly visible. In the experiment, we show an up to four times improvement in polarization extinction for the individual metasurface element geometry consisting of deep subwavelength nanoboomerangs with feature sizes of the order of 100 nm. As confirmed by simulations, strong plasmonic hybridization yields two spectrally separated plasmonic resonances, ultimately allowing for the desired phase and scattering engineering in transmission. Due to the design flexibility of inverse metasurfaces, a large number of highly integrated ultra-flat photonic elements can be envisioned, examples of which include monolithic lenses for telecommunications and spectroscopy, beam shaper or generator for particle trapping or acceleration or sophisticated polarization control for microscopy.