Search Results

Now showing 1 - 8 of 8
Loading...
Thumbnail Image
Item

Imaging of buried 3D magnetic rolled-up nanomembranes

2014, Streubel, R., Han, L., Kronast, F., Ünal, A.A., Schmidt, O.G., Makarov, D.

Increasing performance and enabling novel functionalities of microelectronic devices, such as three-dimensional (3D) on-chip architectures in optics, electronics, and magnetics, calls for new approaches in both fabrication and characterization. Up to now, 3D magnetic architectures had mainly been studied by integral means without providing insight into local magnetic microstructures that determine the device performance. We prove a concept that allows for imaging magnetic domain patterns in buried 3D objects, for example, magnetic tubular architectures with multiple windings. The approach is based on utilizing the shadow contrast in transmission X-ray magnetic circular dichroism (XMCD) photoemission electron microscopy and correlating the observed 2D projection of the 3D magnetic domains with simulated XMCD patterns. That way, we are not only able to assess magnetic states but also monitor the field-driven evolution of the magnetic domain patterns in individual windings of buried magnetic rolled-up nanomembranes.

Loading...
Thumbnail Image
Item

Wireless magnetic-based closed-loop control of self-propelled microjets

2014, Khalil, I.S.M., Magdanz, V., Sanchez, S., Schmidt, O.G., Misra, S.

In this study, we demonstrate closed-loop motion control of self-propelled microjets under the influence of external magnetic fields. We control the orientation of the microjets using external magnetic torque, whereas the linear motion towards a reference position is accomplished by the thrust and pulling magnetic forces generated by the ejecting oxygen bubbles and field gradients, respectively. The magnetic dipole moment of the microjets is characterized using the U-turn technique, and its average is calculated to be 1.3x10-10 A.m2 at magnetic field and linear velocity of 2 mT and 100 μm/s, respectively. The characterized magnetic dipole moment is used in the realization of the magnetic force-current map of the microjets. This map in turn is used for the design of a closed-loop control system that does not depend on the exact dynamical model of the microjets and the accurate knowledge of the parameters of the magnetic system. The motion control characteristics in the transient- and steady-states depend on the concentration of the surrounding fluid (hydrogen peroxide solution) and the strength of the applied magnetic field. Our control system allows us to position microjets at an average velocity of 115 μm/s, and within an average region-of-convergence of 365 μm.

Loading...
Thumbnail Image
Item

Magnetosensitive e-skins with directional perception for augmented reality

2018, Cañón Bermúdez, G.S., Karnaushenko, D.D., Karnaushenko, D., Lebanov, A., Bischoff, L., Kaltenbrunner, M., Fassbender, J., Schmidt, O.G., Makarov, D.

Electronic skins equipped with artificial receptors are able to extend our perception beyond the modalities that have naturally evolved. These synthetic receptors offer complimentary information on our surroundings and endow us with novel means of manipulating physical or even virtual objects. We realize highly compliant magnetosensitive skins with directional perception that enable magnetic cognition, body position tracking, and touchless object manipulation. Transfer printing of eight high-performance spin valve sensors arranged into two Wheatstone bridges onto 1.7-mm-thick polyimide foils ensures mechanical imperceptibility. This resembles a new class of interactive devices extracting information from the surroundings through magnetic tags. We demonstrate this concept in augmented reality systems with virtual knob-turning functions and the operation of virtual dialing pads, based on the interaction with magnetic fields. This technology will enable a cornucopia of applications from navigation, motion tracking in robotics, regenerative medicine, and sports and gaming to interaction in supplemented reality.

Loading...
Thumbnail Image
Item

Ultracompact three-dimensional tubular conductivity microsensors for ionic and biosensing applications

2014, Martinez-Cisneros, C.S., Sanchez, S., Xi, W., Schmidt, O.G.

We present ultracompact three-dimensional tubular structures integrating Au-based electrodes as impedimetric microsensors for the in-flow determination of mono- and divalent ionic species and HeLa cells. The microsensors show an improved performance of 2 orders of magnitude (limit of detection = 0.1 nM for KCl) compared to conventional planar conductivity detection systems integrated in microfluidic platforms and the capability to detect single HeLa cells in flowing phosphate buffered saline. These highly integrated conductivity tubular sensors thus open new possibilities for lab-in-a-tube devices for bioapplications such as biosensing and bioelectronics.

Loading...
Thumbnail Image
Item

Transport in ZnCoO thin films with stable bound magnetic polarons

2014, Kaspar, T., Fiedler, J., Skorupa, I., Bürger, D., Schmidt, O.G., Schmidt, H.

Diluted magnetic ZnCoO films with 5 at.% Co have been fabricated by pulsed laser deposition on c-plane sapphire substrates and Schottky and Ohmic contacts have been prepared in top-top configuration. The diode current is significantly reduced after the diode has been subjected to an external magnetic field. In the reverse bias range the corresponding positive magnetoresistance is persistent and amounts to more than 1800% (50 K), 240% (30 K), and 50% (5 K). This huge magnetoresistance can be attributed to the large internal magnetic field in depleted ZnCoO with ferromagnetic exchange between stable bound magnetic polarons.

Loading...
Thumbnail Image
Item

Free-standing Fe2O3 nanomembranes enabling ultra-long cycling life and high rate capability for Li-ion batteries

2014, Liu, X., Si, W., Zhang, J., Sun, X., Deng, J., Baunack, S., Oswald, S., Liu, L., Yan, C., Schmidt, O.G.

With Fe2O3 as a proof-of-concept, free-standing nanomembrane structure is demonstrated to be highly advantageous to improve the performance of Li-ion batteries. The Fe2O3 nanomembrane electrodes exhibit ultra-long cycling life at high current rates with satisfactory capacity (808 mAh g-1 after 1000 cycles at 2 C and 530 mAh g-1 after 3000 cycles at 6 C) as well as repeatable high rate capability up to 50 C. The excellent performance benefits particularly from the unique structural advantages of the nanomembranes. The mechanical feature can buffer the strain of lithiation/delithiation to postpone the pulverization. The two-dimensional transport pathways in between the nanomembranes can promote the pseudo-capacitive type storage. The parallel-laid nanomembranes, which are coated by polymeric gel-like film and SEI layer with the electrolyte in between layers, electrochemically behave like numerous "mini-capacitors" to provide the pseudo-capacitance thus maintain the capacity at high rate.

Loading...
Thumbnail Image
Item

A highly flexible and compact magnetoresistive analytic device

2014, Lin, G., Makarov, D., Melzer, M., Si, W., Yan, C., Schmidt, O.G.

A grand vision of realization of smart and compact multifunctional microfluidic devices for wearable health monitoring, environment sensing and point-of-care tests emerged with the fast development of flexible electronics. As a vital component towards this vision, magnetic functionality in flexible fluidics is still missing although demanded by the broad utility of magnetic nanoparticles in medicine and biology. Here, we demonstrate the first flexible microfluidic analytic device with integrated high-performance giant magnetoresistive (GMR) sensors. This device can be bent to a radius of 2 mm while still retaining its full performance. Various dimensions of magnetic emulsion droplets can be probed with high precision using a limit of detection of 0.5 pl, providing broad applicability in high-throughput droplet screening, flow cytometry and drug development. The flexible feature of this analytic device holds great promise in the realization of wearable, implantable multifunctional platforms for biomedical, pharmaceutical and chemical applications.

Loading...
Thumbnail Image
Item

Rolled-up functionalized nanomembranes as three-dimensional cavities for single cell studies

2014, Xi, W., Schmidt, C.K., Sanchez, S., Gracias, D.H., Carazo-Salas, R.E., Jackson, S.P., Schmidt, O.G.

We use micropatterning and strain engineering to encapsulate single living mammalian cells into transparent tubular architectures consisting of three-dimensional (3D) rolled-up nanomembranes. By using optical microscopy, we demonstrate that these structures are suitable for the scrutiny of cellular dynamics within confined 3D-microenvironments. We show that spatial confinement of mitotic mammalian cells inside tubular architectures can perturb metaphase plate formation, delay mitotic progression, and cause chromosomal instability in both a transformed and nontransformed human cell line. These findings could provide important clues into how spatial constraints dictate cellular behavior and function.