Search Results

Now showing 1 - 10 of 35
  • Item
    Tuning emission energy and fine structure splitting in quantum dots emitting in the telecom O-band
    (College Park, MD : American Institute of Physics, 2019) Höfer, B.; Olbrich, F.; Kettler, J.; Paul, M.; Höschele, J.; Jetter, M.; Portalupi, S.L.; Ding, F.; Michler, P.; Schmidt, O.G.
    We report on optical investigations of MOVPE-grown InGaAs/GaAs quantum dots emitting at the telecom O-band that were integrated onto uniaxial piezoelectric actuators. This promising technique, which does not degrade the emission brightness of the quantum emitters, enables us to tune the quantum dot emission wavelengths and their fine-structure splitting. By spectrally analyzing the emitted light with respect to its polarization, we are able to demonstrate the cancelation of the fine structure splitting within the experimental resolution limit. This work represents an important step towards the high-yield generation of entangled photon pairs at telecommunication wavelength, together with the capability to precisely tune the emission to target wavelengths.
  • Item
    Temperature-dependent Raman investigation of rolled up InGaAs/GaAs microtubes
    (New York, NY [u.a.] : Springer, 2012) Rodriguez, R.D.; Sheremet, E.; Thurmer, D.J.; Lehmann, D.; Gordan, O.D.; Seidel, F.; Milekhin, A.; Schmidt, O.G.; Hietschold, M.; Zahn, D.R.T.
    Large arrays of multifunctional rolled-up semiconductors can be mass-produced with precisely controlled size and composition, making them of great technological interest for micro- and nano-scale device fabrication. The microtube behavior at different temperatures is a key factor towards further engineering their functionality, as well as for characterizing strain, defects, and temperature-dependent properties of the structures. For this purpose, we probe optical phonons of GaAs/InGaAs rolled-up microtubes using Raman spectroscopy on defect-rich (faulty) and defect-free microtubes. The microtubes are fabricated by selectively etching an AlAs sacrificial layer in order to release the strained InGaAs/GaAs bilayer, all grown by molecular beam epitaxy. Pristine microtubes show homogeneity of the GaAs and InGaAs peak positions and intensities along the tube, which indicates a defect-free rolling up process, while for a cone-like microtube, a downward shift of the GaAs LO phonon peak along the cone is observed. Formation of other type of defects, including partially unfolded microtubes, can also be related to a high Raman intensity of the TO phonon in GaAs. We argue that the appearance of the TO phonon mode is a consequence of further relaxation of the selection rules due to the defects on the tubes, which makes this phonon useful for failure detection/prediction in such rolled up systems. In order to systematically characterize the temperature stability of the rolled up microtubes, Raman spectra were acquired as a function of sample temperature up to 300°C. The reversibility of the changes in the Raman spectra of the tubes within this temperature range is demonstrated.
  • Item
    Slow and fast single photons from a quantum dot interacting with the excited state hyperfine structure of the Cesium D1-line
    (London : Nature Publishing Group, 2019) Kroh, T.; Wolters, J.; Ahlrichs, A.; Schell, A.W.; Thoma, A.; Reitzenstein, S.; Wildmann, J.S.; Zallo, E.; Trotta, R.; Rastelli, A.; Schmidt, O.G.; Benson, O.
    Hybrid interfaces between distinct quantum systems play a major role in the implementation of quantum networks. Quantum states have to be stored in memories to synchronize the photon arrival times for entanglement swapping by projective measurements in quantum repeaters or for entanglement purification. Here, we analyze the distortion of a single-photon wave packet propagating through a dispersive and absorptive medium with high spectral resolution. Single photons are generated from a single In(Ga)As quantum dot with its excitonic transition precisely set relative to the Cesium D1 transition. The delay of spectral components of the single-photon wave packet with almost Fourier-limited width is investigated in detail with a 200 MHz narrow-band monolithic Fabry-Pérot resonator. Reflecting the excited state hyperfine structure of Cesium, “slow light” and “fast light” behavior is observed. As a step towards room-temperature alkali vapor memories, quantum dot photons are delayed for 5 ns by strong dispersion between the two 1.17 GHz hyperfine-split excited state transitions. Based on optical pumping on the hyperfine-split ground states, we propose a simple, all-optically controllable delay for synchronization of heralded narrow-band photons in a quantum network.
  • Item
    Artificial micro-cinderella based on self-propelled micromagnets for the active separation of paramagnetic particles
    (Cambridge : RSC, 2013) Zhao, G.; Wang, H.; Sanchez, S.; Schmidt, O.G.; Pumera, M.
    In this work, we will show that ferromagnetic microjets can pick-up paramagnetic beads while not showing any interaction with diamagnetic silica microparticles for the active separation of microparticles in solution.
  • Item
    Free-standing Fe2O3 nanomembranes enabling ultra-long cycling life and high rate capability for Li-ion batteries
    (London : Nature Publishing Group, 2014) Liu, X.; Si, W.; Zhang, J.; Sun, X.; Deng, J.; Baunack, S.; Oswald, S.; Liu, L.; Yan, C.; Schmidt, O.G.
    With Fe2O3 as a proof-of-concept, free-standing nanomembrane structure is demonstrated to be highly advantageous to improve the performance of Li-ion batteries. The Fe2O3 nanomembrane electrodes exhibit ultra-long cycling life at high current rates with satisfactory capacity (808 mAh g-1 after 1000 cycles at 2 C and 530 mAh g-1 after 3000 cycles at 6 C) as well as repeatable high rate capability up to 50 C. The excellent performance benefits particularly from the unique structural advantages of the nanomembranes. The mechanical feature can buffer the strain of lithiation/delithiation to postpone the pulverization. The two-dimensional transport pathways in between the nanomembranes can promote the pseudo-capacitive type storage. The parallel-laid nanomembranes, which are coated by polymeric gel-like film and SEI layer with the electrolyte in between layers, electrochemically behave like numerous "mini-capacitors" to provide the pseudo-capacitance thus maintain the capacity at high rate.
  • Item
    A highly flexible and compact magnetoresistive analytic device
    (London [u.a.] : Royal Society of Chemistry, 2014) Lin, G.; Makarov, D.; Melzer, M.; Si, W.; Yan, C.; Schmidt, O.G.
    A grand vision of realization of smart and compact multifunctional microfluidic devices for wearable health monitoring, environment sensing and point-of-care tests emerged with the fast development of flexible electronics. As a vital component towards this vision, magnetic functionality in flexible fluidics is still missing although demanded by the broad utility of magnetic nanoparticles in medicine and biology. Here, we demonstrate the first flexible microfluidic analytic device with integrated high-performance giant magnetoresistive (GMR) sensors. This device can be bent to a radius of 2 mm while still retaining its full performance. Various dimensions of magnetic emulsion droplets can be probed with high precision using a limit of detection of 0.5 pl, providing broad applicability in high-throughput droplet screening, flow cytometry and drug development. The flexible feature of this analytic device holds great promise in the realization of wearable, implantable multifunctional platforms for biomedical, pharmaceutical and chemical applications.
  • Item
    Vectorial nonlinear coherent response of a strongly confined exciton-biexciton system
    (Bristol : IOP, 2013) Kasprzak, J.; Portolan, S.; Rastelli, A.; Wang, L.; Plumhof, J.D.; Schmidt, O.G.; Langbein, W.
    The vectorial four-wave mixing response of an individual strongly confined exciton-biexciton system with fine-structure splitting in a GaAs/AlGaAs quantum dot is measured by dual-polarization heterodyne spectral interferometry. The results are compared with theoretical predictions based on the optical Bloch equations. The system is described by a four-level scheme, which is a model system of the nonlinear excitonic response in low-dimensional semiconductors. We measure its coherence properties and determine the underlying dephasing mechanisms. An impact of the inhomogeneous broadening by spectral wandering on the coherent response is investigated. We further discuss the different four-wave mixing pathways, polarization selection rules, the time-resolved polarization state, the vectorial response in two-dimensional four-wave mixing and ensemble properties.
  • Item
    Coupling a single solid-state quantum emitter to an array of resonant plasmonic antennas
    (London : Nature Publishing Group, 2018) Pfeiffer, M.; Atkinson, P.; Rastelli, A.; Schmidt, O.G.; Giessen, H.; Lippitz, M.; Lindfors, K.
    Plasmon resonant arrays or meta-surfaces shape both the incoming optical field and the local density of states for emission processes. They provide large regions of enhanced emission from emitters and greater design flexibility than single nanoantennas. This makes them of great interest for engineering optical absorption and emission. Here we study the coupling of a single quantum emitter, a self-assembled semiconductor quantum dot, to a plasmonic meta-surface. We investigate the influence of the spectral properties of the nanoantennas and the position of the emitter in the unit cell of the structure. We observe a resonant enhancement due to emitter-array coupling in the far-field regime and find a clear difference from the interaction of an emitter with a single antenna.
  • Item
    Self-assembly of highly sensitive 3D magnetic field vector angular encoders
    (Washington : American Association for the Advancement of Science (A A A S), 2019) Becker, C.; Karnaushenko, D.; Kang, T.; Karnaushenko, D.D.; Faghih, M.; Mirhajivarzaneh, A.; Schmidt, O.G.
    Novel robotic, bioelectronic, and diagnostic systems require a variety of compact and high-performance sensors. Among them, compact three-dimensional (3D) vector angular encoders are required to determine spatial position and orientation in a 3D environment. However, fabrication of 3D vector sensors is a challenging task associated with time-consuming and expensive, sequential processing needed for the orientation of individual sensor elements in 3D space. In this work, we demonstrate the potential of 3D self-assembly to simultaneously reorient numerous giant magnetoresistive (GMR) spin valve sensors for smart fabrication of 3D magnetic angular encoders. During the self-assembly process, the GMR sensors are brought into their desired orthogonal positions within the three Cartesian planes in a simultaneous process that yields monolithic high-performance devices. We fabricated vector angular encoders with equivalent angular accuracy in all directions of 0.14°, as well as low noise and low power consumption during high-speed operation at frequencies up to 1 kHz.
  • Item
    Rolled-up functionalized nanomembranes as three-dimensional cavities for single cell studies
    (Washington, DC : American Chemical Society, 2014) Xi, W.; Schmidt, C.K.; Sanchez, S.; Gracias, D.H.; Carazo-Salas, R.E.; Jackson, S.P.; Schmidt, O.G.
    We use micropatterning and strain engineering to encapsulate single living mammalian cells into transparent tubular architectures consisting of three-dimensional (3D) rolled-up nanomembranes. By using optical microscopy, we demonstrate that these structures are suitable for the scrutiny of cellular dynamics within confined 3D-microenvironments. We show that spatial confinement of mitotic mammalian cells inside tubular architectures can perturb metaphase plate formation, delay mitotic progression, and cause chromosomal instability in both a transformed and nontransformed human cell line. These findings could provide important clues into how spatial constraints dictate cellular behavior and function.