Search Results

Now showing 1 - 2 of 2
  • Item
    A highly flexible and compact magnetoresistive analytic device
    (London [u.a.] : Royal Society of Chemistry, 2014) Lin, G.; Makarov, D.; Melzer, M.; Si, W.; Yan, C.; Schmidt, O.G.
    A grand vision of realization of smart and compact multifunctional microfluidic devices for wearable health monitoring, environment sensing and point-of-care tests emerged with the fast development of flexible electronics. As a vital component towards this vision, magnetic functionality in flexible fluidics is still missing although demanded by the broad utility of magnetic nanoparticles in medicine and biology. Here, we demonstrate the first flexible microfluidic analytic device with integrated high-performance giant magnetoresistive (GMR) sensors. This device can be bent to a radius of 2 mm while still retaining its full performance. Various dimensions of magnetic emulsion droplets can be probed with high precision using a limit of detection of 0.5 pl, providing broad applicability in high-throughput droplet screening, flow cytometry and drug development. The flexible feature of this analytic device holds great promise in the realization of wearable, implantable multifunctional platforms for biomedical, pharmaceutical and chemical applications.
  • Item
    Photoactive rolled-up TiO2 microtubes: Fabrication, characterization and applications
    (London [u.a.] : Royal Society of Chemistry, 2014) Giudicatti, S.; Marz, S.M.; Soler, L.; Madani, A.; Jorgensen, M.R.; Sanchez, S.; Schmidt, O.G.
    Because of its unique properties, titania (TiO2) represents a promising candidate in a wide variety of research fields. In this paper, some of the properties and potential applications of titania within rolled-up nanotechnology are explored. It is shown how the structural and optical properties of rolled titania microtubes can be controlled by properly tuning the microfabrication parameters. The rolling up of titania films on different sacrificial layers and containing different shapes, achieving a control on the diameter of the fabricated titania microtubes, is presented. In order to obtain the more photoactive crystalline form of titania, one during-fabrication and two post-fabrication methods are demonstrated. Interesting applications in the fields of photocatalysis and photonics are suggested: the use of titania rolled-up microtubes as micromotors and optical microresonators is presented.