Search Results

Now showing 1 - 2 of 2
  • Item
    Wearable magnetic field sensors for flexible electronics
    (Hoboken, NJ : Wiley, 2014) Melzer, Michael; Mönch, Jens Ingolf; Makarov, Denys; Zabila, Yevhen; Bermúdez, Gilbert Santiago Cañón; Karnaushenko, Daniil; Baunack, Stefan; Bahr, Falk; Yan, Chenglin; Kaltenbrunner, Martin; Schmidt, Oliver G.
    Highly flexible bismuth Hall sensors on polymeric foils are fabricated, and the key optimization steps that are required to boost their sensitivity to the bulk value are identified. The sensor can be bent around the wrist or positioned on the finger to realize an interactive pointing device for wearable electronics. Furthermore, this technology is of great interest for the rapidly developing market of ­eMobility, for optimization of eMotors and magnetic bearings.
  • Item
    High-performance magnetic sensorics for printable and flexible electronics
    (Hoboken, NJ : Wiley, 2014) Karnaushenko, Daniil; Makarov, Denys; Stöber, Max; Karnaushenko, Dmitriy D.; Baunack, Stefan; Schmidt, Oliver G.
    High‐performance giant magnetoresistive (GMR) sensorics are realized, which are printed at predefined locations on flexible circuitry. Remarkably, the printed magnetosensors remain fully operational over the complete consumer temperature range and reveal a giant magnetoresistance up to 37% and a sensitivity of 0.93 T−1 at 130 mT. With these specifications, printed magnetoelectronics can be controlled using flexible active electronics for the realization of smart packaging and energy‐efficient switches.