Search Results

Now showing 1 - 6 of 6
  • Item
    A new dimension for magnetosensitive e-skins: active matrix integrated micro-origami sensor arrays
    ([London] : Nature Publishing Group UK, 2022) Becker, Christian; Bao, Bin; Karnaushenko, Dmitriy D.; Bandari, Vineeth Kumar; Rivkin, Boris; Li, Zhe; Faghih, Maryam; Karnaushenko, Daniil; Schmidt, Oliver G.
    Magnetic sensors are widely used in our daily life for assessing the position and orientation of objects. Recently, the magnetic sensing modality has been introduced to electronic skins (e-skins), enabling remote perception of moving objects. However, the integration density of magnetic sensors is limited and the vector properties of the magnetic field cannot be fully explored since the sensors can only perceive field components in one or two dimensions. Here, we report an approach to fabricate high-density integrated active matrix magnetic sensor with three-dimensional (3D) magnetic vector field sensing capability. The 3D magnetic sensor is composed of an array of self-assembled micro-origami cubic architectures with biased anisotropic magnetoresistance (AMR) sensors manufactured in a wafer-scale process. Integrating the 3D magnetic sensors into an e-skin with embedded magnetic hairs enables real-time multidirectional tactile perception. We demonstrate a versatile approach for the fabrication of active matrix integrated 3D sensor arrays using micro-origami and pave the way for new electronic devices relying on the autonomous rearrangement of functional elements in space.
  • Item
    Retrieving spin textures on curved magnetic thin films with full-field soft X-ray microscopies
    ([London] : Nature Publishing Group UK, 2015) Streubel, Robert; Kronast, Florian; Fischer, Peter; Parkinson, Dula; Schmidt, Oliver G.; Makarov, Denys
    X-ray tomography is a well-established technique to characterize 3D structures in material sciences and biology; its magnetic analogue--magnetic X-ray tomography--is yet to be developed. Here we demonstrate the visualization and reconstruction of magnetic domain structures in a 3D curved magnetic thin films with tubular shape by means of full-field soft X-ray microscopies. The 3D arrangement of the magnetization is retrieved from a set of 2D projections by analysing the evolution of the magnetic contrast with varying projection angle. Using reconstruction algorithms to analyse the angular evolution of 2D projections provides quantitative information about domain patterns and magnetic coupling phenomena between windings of azimuthally and radially magnetized tubular objects. The present approach represents a first milestone towards visualizing magnetization textures of 3D curved thin films with virtually arbitrary shape.
  • Item
    Integrated molecular diode as 10 MHz half-wave rectifier based on an organic nanostructure heterojunction
    ([London] : Nature Publishing Group UK, 2020) Li, Tianming; Bandari, Vineeth Kumar; Hantusch, Martin; Xin, Jianhui; Kuhrt, Robert; Ravishankar, Rachappa; Xu, Longqian; Zhang, Jidong; Knupfer, Martin; Zhu, Feng; Yan, Donghang; Schmidt, Oliver G.
    Considerable efforts have been made to realize nanoscale diodes based on single molecules or molecular ensembles for implementing the concept of molecular electronics. However, so far, functional molecular diodes have only been demonstrated in the very low alternating current frequency regime, which is partially due to their extremely low conductance and the poor degree of device integration. Here, we report about fully integrated rectifiers with microtubular soft-contacts, which are based on a molecularly thin organic heterojunction and are able to convert alternating current with a frequency of up to 10 MHz. The unidirectional current behavior of our devices originates mainly from the intrinsically different surfaces of the bottom planar and top microtubular Au electrodes while the excellent high frequency response benefits from the charge accumulation in the phthalocyanine molecular heterojunction, which not only improves the charge injection but also increases the carrier density.
  • Item
    On-chip integrated process-programmable sub-10 nm thick molecular devices switching between photomultiplication and memristive behaviour
    ([London] : Nature Publishing Group UK, 2022) Li, Tianming; Hantusch, Martin; Qu, Jiang; Bandari, Vineeth Kumar; Knupfer, Martin; Zhu, Feng; Schmidt, Oliver G.
    Molecular devices constructed by sub-10 nm thick molecular layers are promising candidates for a new generation of integratable nanoelectronic applications. Here, we report integrated molecular devices based on ultrathin copper phthalocyanine/fullerene hybrid layers with microtubular soft-contacts, which exhibit process-programmable functionality switching between photomultiplication and memristive behaviour. The local electric field at the interface between the polymer bottom electrode and the enclosed molecular channels modulates the ionic-electronic charge interaction and hence determines the transition of the device function. When ions are not driven into the molecular channels at a low interface electric field, photogenerated holes are trapped as electronic space charges, resulting in photomultiplication with a high external quantum efficiency. Once mobile ions are polarized and accumulated as ionic space charges in the molecular channels at a high interface electric field, the molecular devices show ferroelectric-like memristive switching with remarkable resistive ON/OFF and rectification ratios.
  • Item
    Ultrasmall SnOâ‚‚ nanocrystals: hot-bubbling synthesis, encapsulation in carbon layers and applications in high capacity Li-ion storage
    ([London] : Macmillan Publishers Limited, part of Springer Nature, 2014) Ding, Liping; He, Shulian; Miao, Shiding; Jorgensen, Matthew R.; Leubner, Susanne; Yan, Chenglin; Hickey, Stephen G.; Eychmüller, Alexander; Xu, Jinzhang; Schmidt, Oliver G.
    Ultrasmall SnO2 nanocrystals as anode materials for lithium-ion batteries (LIBs) have been synthesized by bubbling an oxidizing gas into hot surfactant solutions containing Sn-oleate complexes. Annealing of the particles in N2 carbonifies the densely packed surface capping ligands resulting in carbon encapsulated SnO2 nanoparticles (SnO2/C). Carbon encapsulation can effectively buffer the volume changes during the lithiation/delithiation process. The assembled SnO2/C thus deliver extraordinarily high reversible capacity of 908 mA·h·g−1 at 0.5 C as well as excellent cycling performance in the LIBs. This method demonstrates the great potential of SnO2/C nanoparticles for the design of high power LIBs.
  • Item
    Manipulating topological states by imprinting non-collinear spin textures
    ([London] : Macmillan Publishers Limited, part of Springer Nature, 2015) Streubel, Robert; Han, Luyang; Im, Mi-Young; Kronast, Florian; Rößler, Ulrich K.; Radu, Florin; Abrudan, Radu; Lin, Gungun; Schmidt, Oliver G.; Fischer, Peter; Makarov, Denys
    Topological magnetic states, such as chiral skyrmions, are of great scientific interest and show huge potential for novel spintronics applications, provided their topological charges can be fully controlled. So far skyrmionic textures have been observed in noncentrosymmetric crystalline materials with low symmetry and at low temperatures. We propose theoretically and demonstrate experimentally the design of spin textures with topological charge densities that can be tailored at ambient temperatures. Tuning the interlayer coupling in vertically stacked nanopatterned magnetic heterostructures, such as a model system of a Co/Pd multilayer coupled to Permalloy, the in-plane non-collinear spin texture of one layer can be imprinted into the out-of-plane magnetised material. We observe distinct spin textures, e.g. vortices, magnetic swirls with tunable opening angle, donut states and skyrmion core configurations. We show that applying a small magnetic field, a reliable switching between topologically distinct textures can be achieved at remanence.