Search Results

Now showing 1 - 3 of 3
  • Item
    High-performance giant magnetoresistive sensorics on flexible Si membranes
    (Melville, NY : American Inst. of Physics, 2015) Pérez, Nicolás; Melzer, Michael; Makarov, Denys; Ueberschär, Olaf; Ecke, Ramona; Schulz, Stefan E.; Schmidt, Oliver G.
    We fabricate high-performance giant magnetoresistive (GMR) sensorics on Si wafers, which are subsequently thinned down to 100 μm or 50 μm to realize mechanically flexible sensing elements. The performance of the GMR sensors upon bending is determined by the thickness of the Si membrane. Thus, bending radii down to 15.5 mm and 6.8 mm are achieved for the devices on 100 μm and 50 μm Si supports, respectively. The GMR magnitude remains unchanged at the level of (15.3 ± 0.4)% independent of the support thickness and bending radius. However, a progressive broadening of the GMR curve is observed associated with the magnetostriction of the containing Ni81Fe19 alloy, which is induced by the tensile bending strain generated on the surface of the Si membrane. An effective magnetostriction value of λs = 1.7 × 10−6 is estimated for the GMR stack. Cyclic bending experiments showed excellent reproducibility of the GMR curves during 100 bending cycles.
  • Item
    Optical properties of individual site-controlled Ge quantum dots
    (Melville, NY : American Inst. of Physics, 2015) Grydlik, Martyna; Brehm, Moritz; Tayagaki, Takeshi; Langer, Gregor; Schmidt, Oliver G.; Schäffler, Friedrich
    We report photoluminescence (PL) experiments on individual SiGe quantum dots (QDs) that were epitaxially grown in a site-controlled fashion on pre-patterned Si(001) substrates. We demonstrate that the PL line-widths of single QDs decrease with excitation power to about 16 meV, a value that is much narrower than any of the previously reported PL signals in the SiGe/Si heterosystem. At low temperatures, the PL-intensity becomes limited by a 25 meV high potential-barrier between the QDs and the surrounding Ge wetting layer (WL). This barrier impedes QD filling from the WL which collects and traps most of the optically excited holes in this type-II heterosystem. This work was supported by the Austrian Science Funds (FWF) via Schrödinger Scholarship J3328-N19 and the Project Nos. F2502-N17 and F2512-N17 of SFB025: IRON. M.G. and O.G.S. acknowledge support from the Center for Advancing Electronics Dresden, CfAED. T.T. was supported by the ICR-KU International Short-term Exchange Program for Young Researchers. The authors thank T. Fromherz and F. Hackl for helpful discussions.
  • Item
    Shapeable magnetoelectronics
    (Melville, NY : American Inst. of Physics, 2016) Makarov, Denys; Melzer, Michael; Karnaushenko, Daniil; Schmidt, Oliver G.
    Inorganic nanomembranes are shapeable (flexible, printable, and even stretchable) and transferrable to virtually any substrate. These properties build the core concept for new technologies, which transform otherwise rigid high-speed devices into their shapeable counterparts. This research is motivated by the eagerness of consumer electronics towards being thin, lightweight, flexible, and even wearable. The realization of this concept requires all building blocks as we know them from rigid electronics (e.g., active elements, optoelectronics, magnetoelectronics, and energy storage) to be replicated in the form of (multi)functional nanomembranes, which can be reshaped on demand after fabrication. There are already a variety of shapeable devices commercially available, i.e., electronic displays, energy storage elements, and integrated circuitry, to name a few. From the beginning, the main focus was on the fabrication of shapeable high-speed electronics and optoelectronics. Only very recently, a new member featuring magnetic functionalities was added to the family of shapeable electronics. With their unique mechanical properties, the shapeable magnetic field sensor elements readily conform to ubiquitous objects of arbitrary shapes including the human skin. This feature leads electronic skin systems beyond imitating the characteristics of its natural archetype and extends their cognition to static and dynamic magnetic fields that by no means can be perceived by human beings naturally. Various application fields of shapeable magnetoelectronics are proposed. The developed sensor platform can equip soft electronic systems with navigation, orientation, motion tracking, and touchless control capabilities. A variety of novel technologies, such as smart textiles, soft robotics and actuators, active medical implants, and soft consumer electronics, will benefit from these new magnetic functionalities. This review reflects the establishment of shapeable magnetic sensorics, describing the entire development from the first attempts to verify the functional concept to the realization of ready-to-use highly compliant and strain invariant sensor devices with remarkable robustness.