Search Results

Now showing 1 - 10 of 14
  • Item
    Micromotor-mediated sperm constrictions for improved swimming performance
    (Berlin ; Heidelberg : Springer, 2021) Striggow, Friedrich; Nadporozhskaia, Lidiia; Friedrich, Benjamin M.; Schmidt, Oliver G.; Medina-Sánchez, Mariana
    Sperm-driven micromotors, consisting of a single sperm cell captured in a microcap, utilize the strong propulsion generated by the flagellar beat of motile spermatozoa for locomotion. It enables the movement of such micromotors in biological media, while being steered remotely by means of an external magnetic field. The substantial decrease in swimming speed, caused by the additional hydrodynamic load of the microcap, limits the applicability of sperm-based micromotors. Therefore, to improve the performance of such micromotors, we first investigate the effects of additional cargo on the flagellar beat of spermatozoa. We designed two different kinds of microcaps, which each result in different load responses of the flagellar beat. As an additional design feature, we constrain rotational degrees of freedom of the cell’s motion by modifying the inner cavity of the cap. Particularly, cell rolling is substantially reduced by tightly locking the sperm head inside the microcap. Likewise, cell yawing is decreased by aligning the micromotors under an external static magnetic field. The observed differences in swimming speed of different micromotors are not so much a direct consequence of hydrodynamic effects, but rather stem from changes in flagellar bending waves, hence are an indirect effect. Our work serves as proof-of-principle that the optimal design of microcaps is key for the development of efficient sperm-driven micromotors.
  • Item
    Advanced architecture designs towards high-performance 3D microbatteries
    (Amsterdam : Elsevier, 2021) Li, Yang; Qu, Jiang; Li, Fei; Qu, Zhe; Tang, Hongmei; Liu, Lixiang; Zhu, Minshen; Schmidt, Oliver G.
    Rechargeable microbatteries are important power supplies for microelectronic devices. Two essential targets for rechargeable microbatteries are high output energy and minimal footprint areas. In addition to the development of new high-performance electrode materials, the device configurations of microbatteries also play an important role in enhancing the output energy and miniaturizing the footprint area. To make a clear vision on the design principle of rechargeable microbatteries, we firstly summarize the typical configurations of microbatteries. The advantages of different configurations are thoroughly discussed from the aspects of fabrication technologies and material engineering. Towards the high energy output at a minimal footprint area, a revolutionary design for microbatteries is of great importance. In this perspective, we review the progress of fabricating microbatteries based on the rolled-up nanotechnology, a derivative origami technology. Finally, we discussed the challenges and perspectives in the device design and materials optimization.
  • Item
    Recent developments of stamped planar micro-supercapacitors: Materials, fabrication and perspectives
    (Amsterdam : Elsevier, 2021) Li, Fei; Li, Yang; Qu, Jiang; Wang, Jinhui; Bandari, Vineeth Kumar; Zhu, Feng; Schmidt, Oliver G.
    The rapid development of wearable and portable electronics has dramatically increased the application for miniaturized energy storage components. Stamping micro-supercapacitors (MSCs) with planar interdigital configurations are considered as a promising candidate to meet the requirements. In this review, recent progress of the different stamping materials and various stamping technologies are first discussed. The merits of each material, manufacturing process of each stamping method and the properties of stamping MSCs are scrutinized, respectively. Further insights on technical difficulties and scientific challenges are finally demonstrated, including the limited thickness of printed electrodes, poor overlay accuracy and printing resolution.
  • Item
    Steering Directional Light Emission and Mode Chirality through Postshaping of Cavity Geometry
    (Hoboke, NJ : Wiley, 2020) Wang, Jiawei; Tang, Min; Yang, Yue-De; Yin, Yin; Chen, Yan; Saggau, Christian Niclaas; Zhu, Minshen; Yuan, Xiaobo; Karnaushenko, Dmitriy; Huang, Yong-Zhen; Ma, Libo; Schmidt, Oliver G.
    Dielectric optical microcavities have been explored as an excellent platform to manipulate the light flow and investigate non‐Hermitian physics in open optical systems. For whispering gallery mode optical microcavities, modifying the rotational symmetry is highly desirable for intriguing phenomena such as degenerated chiral modes and directional light emission. However, for the state‐of‐the‐art approaches, namely deforming the cavity geometry by precision lithography or introducing local scatterers near the cavity boundary via micromanipulation, there is a lack of flexibility in fine‐adjusting of chiral symmetry and far‐field emission direction. Here, precise engineering of cavity boundary using electron‐beam‐induced deposition is reported based on rolled‐up nanomembrane‐enabled spiral‐shaped microcavities. The deformation of outer boundary results in delicate tailoring of asymmetric backscattering between the outer and inner rolling edges, and hence deterministically strong mode chirality. Besides, the crescent‐shaped high‐index nanocap leads to modified light tunneling channels and inflected far‐field emission angle. It is envisioned that such a localized deposition‐assisted technique for adjusting the structural deformation of 3D optical microcavities will be highly useful for understanding rich insights in non‐Hermitian photonics and unfolding exotic properties on lasing, sensing, and cavity quantum electrodynamics.
  • Item
    A compact tube-in-tube microsized lithium-ion battery as an independent microelectric power supply unit
    ([New York, NY] : Elsevier, 2021) Weng, Qunhong; Wang, Sitao; Liu, Lixiang; Lu, Xueyi; Zhu, Minshen; Li, Yang; Gabler, Felix; Schmidt, Oliver G.
    Independent and well-packaged miniaturized energy storage devices (MESDs) are indispensable as power sources or backup units for integrated circuits and many dispersive electronics applications. Challenges associated with MESD development relate to their low packaged areal energy density and poor battery performance. Here, we propose a compact tube-in-tube battery configuration to overcome the areal energy density and packaging problems in microbatteries. Compact microtubular microelectrodes rolled up from patterned nanomembranes are sealed in an inert glass capillary with a thin tube wall. The resultant tube-in-tube microsized lithium-ion batteries (micro-LIBs), based on various active materials, exhibit very high and scalable packaged areal energy densities up to 605 microampere hours per square centimeter (μAh cm−2) or 313 μWh cm−2 with footprints as small as 0.39–0.79 mm2. This approach is a practical alternative for microbattery microelectrode, packaging, and configuration innovations.
  • Item
    Quantum dot-based broadband optical antenna for efficient extraction of single photons in the telecom O-band
    (Washington, DC : The Optical Society, 2020) Yang, Jingzhong; Nawrath, Cornelius; Keil, Robert; Joos, Raphael; Zhang, Xi; Höfer, Bianca; Chen, Yan; Zopf, Michael; Jetter, Michael; Portalupi, Simone Luca; Ding, Fei; Michler, Peter; Schmidt, Oliver G.
    Long-distance fiber-based quantum communication relies on efficient non-classical light sources operating at telecommunication wavelengths. Semiconductor quantum dots are promising candidates for on-demand generation of single photons and entangled photon pairs for such applications. However, their brightness is strongly limited due to total internal reflection at the semiconductor/vacuum interface. Here we overcome this limitation using a dielectric antenna structure. The non-classical light source consists of a gallium phosphide solid immersion lens in combination with a quantum dot nanomembrane emitting single photons in the telecom O-band. With this device, the photon extraction is strongly increased in a broad spectral range. A brightness of 17% (numerical aperture of 0.6) is obtained experimentally, with a single photon purity of 𝑔(2)(0)=0.049±0.02 at saturation power. This brings the practical implementation of quantum communication networks one step closer.
  • Item
    Experimental observation of Berry phases in optical Möbius-strip microcavities
    (London [u.a.] : Nature Publ. Group, 2022) Wang, Jiawei; Valligatla, Sreeramulu; Yin, Yin; Schwarz, Lukas; Medina-Sánchez, Mariana; Baunack, Stefan; Lee, Ching Hua; Thomale, Ronny; Li, Shilong; Fomin, Vladimir M.; Ma, Libo; Schmidt, Oliver G.
    The Möbius strip, a fascinating loop structure with one-sided topology, provides a rich playground for manipulating the non-trivial topological behaviour of spinning particles, such as electrons, polaritons and photons, in both real and parameter spaces. For photons resonating in a Möbius-strip cavity, the occurrence of an extra phase—known as the Berry phase—with purely topological origin is expected due to its non-trivial evolution in parameter space. However, despite numerous theoretical investigations, characterizing the optical Berry phase in a Möbius-strip cavity has remained elusive. Here we report the experimental observation of the Berry phase generated in optical Möbius-strip microcavities. In contrast to theoretical predictions in optical, electronic and magnetic Möbius-topology systems where only Berry phase π occurs, we demonstrate that a variable Berry phase smaller than π can be acquired by generating elliptical polarization of resonating light. Möbius-strip microcavities as integrable and Berry-phase-programmable optical systems are of great interest in topological physics and emerging classical or quantum photonic applications.
  • Item
    Nano energy for miniaturized systems
    (Amsterdam : Elsevier, 2021) Zhu, Minshen; Zhu, Feng; Schmidt, Oliver G.
    Skin mountable electronic devices are in a high-speed development at the crossroads of materials science, electronics, and computer science. Sophisticated functions, such as sensing, actuating, and computing, are integrated into a soft electronic device that can be firmly mounted to any place of human body. These advanced electronic devices are capable of yielding abilities for us whenever they are needed and even expanding our abilities beyond their natural limitations. Despite the great promise of skin mounted electronic devices, they still lack satisfactory power supplies that are safe and continuous. This Perspective discusses the prospects of the development of energy storage devices for the next generation skin mountable electronic devices based on their unique requirements on flexibility and miniaturized size.
  • Item
    Symmetry‐Induced Selective Excitation of Topological States in Su–Schrieffer–Heeger Waveguide Arrays
    (Weinheim : Wiley-VCH, 2023) Tang, Min; Wang, Jiawei; Valligatla, Sreeramulu; Saggau, Christian N.; Dong, Haiyun; Saei Ghareh Naz, Ehsan; Klembt, Sebastian; Lee, Ching Hua; Thomale, Ronny; van den Brink, Jeroen; Fulga, Ion Cosma; Schmidt, Oliver G.; Ma, Libo
    The investigation of topological state transition in carefully designed photonic lattices is of high interest for fundamental research, as well as for applied studies such as manipulating light flow in on-chip photonic systems. Herein, the topological phase transition between symmetric topological zero modes (TZM) and antisymmetric TZMs in Su–Schrieffer–Heeger mirror symmetric waveguides is reported. The transition of TZMs is realized by adjusting the coupling ratio between neighboring waveguide pairs, which is enabled by selective modulation of the refractive index in the waveguide gaps. Bidirectional topological transitions between symmetric and antisymmetric TZMs can be achieved with proposed switching strategy. Selective excitation of topological edge mode is demonstrated owing to the symmetry characteristics of the TZMs. The flexible manipulation of topological states is promising for on-chip light flow control and may spark further investigations on symmetric/antisymmetric TZM transitions in other photonic topological frameworks.
  • Item
    Editorial for a special issue “Nano energy materials and devices for miniaturized electronics and smart systems”
    (Amsterdam : Elsevier, 2021) Zhu, Feng; Schmidt, Oliver G.
    [No abstract available]