Search Results

Now showing 1 - 10 of 46
Loading...
Thumbnail Image
Item

High-performance Li-O2 batteries with trilayered Pd/MnOx/Pd nanomembranes

2015, Lu, Xueyi, Deng, Junwen, Si, Wenping, Sun, Xiaolei, Liu, Xianghong, Liu, Bo, Liu, Lifeng, Oswald, Steffen, Baunack, Stefan, Grafe, Hans Joachim, Yan, Chenglin, Schmidt, Oliver G.

Trilayered Pd/MnOx/Pd nanomembranes are fabricated as the cathode catalysts for Li‐O2 batteries. The combination of Pd and MnOx facilitates the transport of electrons, lithium ions, and oxygen‐containing intermediates, thus effectively decomposing the discharge product Li2O2 and significantly lowering the charge overpotential and enhancing the power efficiency. This is promising for future environmentally friendly applications.

Loading...
Thumbnail Image
Item

Selective Out‐of‐Plane Optical Coupling between Vertical and Planar Microrings in a 3D Configuration

2020, Valligatla, Sreeramulu, Wang, Jiawei, Madani, Abbas, Naz, Ehsan Saei Ghareh, Hao, Qi, Saggau, Christian Niclaas, Yin, Yin, Ma, Libo, Schmidt, Oliver G.

3D photonic integrated circuits are expected to play a key role in future optoelectronics with efficient signal transfer between photonic layers. Here, the optical coupling of tubular microcavities, supporting resonances in a vertical plane, with planar microrings, accommodating in‐plane resonances, is explored. In such a 3D coupled composite system with largely mismatched cavity sizes, periodic mode splitting and resonant mode shifts are observed due to mode‐selective interactions. The axial direction of the microtube cavity provides additional design freedom for selective mode coupling, which is achieved by carefully adjusting the axial displacement between the microtube and the microring. The spectral anticrossing behavior is caused by strong coupling in this composite optical system and is excellently reproduced by numerical modeling. Interfacing tubular microcavities with planar microrings is a promising approach toward interlayer light transfer with added optical functionality in 3D photonic systems.

Loading...
Thumbnail Image
Item

Deposition of exchange-coupled dinickel complexes on gold substrates utilizing ambidentate mercapto-carboxylato ligands

2017, Börner, Martin, Blömer, Laura, Kischel, Marcus, Richter, Peter, Salvan, Georgeta, Zahn, Dietrich R. T., Siles, Pablo F., Fuentes, Maria E. N., Bufon, Carlos C. B., Grimm, Daniel, Schmidt, Oliver G., Breite, Daniel, Abel, Bernd, Kersting, Berthold

The chemisorption of magnetically bistable transition metal complexes on planar surfaces has recently attracted increased scientific interest due to its potential application in various fields, including molecular spintronics. In this work, the synthesis of mixed-ligand complexes of the type [NiII2L(L’)](ClO4), where L represents a 24-membered macrocyclic hexaazadithiophenolate ligand and L’ is a ω-mercapto-carboxylato ligand (L’ = HS(CH2)5CO2− (6), HS(CH2)10CO2− (7), or HS(C6H4)2CO2− (8)), and their ability to adsorb on gold surfaces is reported. Besides elemental analysis, IR spectroscopy, electrospray ionization mass spectrometry (ESIMS), UV–vis spectroscopy, and X-ray crystallography (for 6 and 7), the compounds were also studied by temperature-dependent magnetic susceptibility measurements (for 7 and 8) and (broken symmetry) density functional theory (DFT) calculations. An S = 2 ground state is demonstrated by temperature-dependent susceptibility and magnetization measurements, achieved by ferromagnetic coupling between the spins of the Ni(II) ions in 7 (J = +22.3 cm−1) and 8 (J = +20.8 cm−1; H = −2JS1S2). The reactivity of complexes 6–8 is reminiscent of that of pure thiolato ligands, which readily chemisorb on Au surfaces as verified by contact angle, atomic force microscopy (AFM) and spectroscopic ellipsometry measurements. The large [Ni2L] tail groups, however, prevent the packing and self-assembly of the hydrocarbon chains. The smaller film thickness of 7 is attributed to the specific coordination mode of the coligand. Results of preliminary transport measurements utilizing rolled-up devices are also reported.

Loading...
Thumbnail Image
Item

Active Matrix Flexible Sensory Systems: Materials, Design, Fabrication, and Integration

2022, Bao, Bin, Karnaushenko, Dmitriy D., Schmidt, Oliver G., Song, Yanlin, Karnaushenko, Daniil

A variety of modern applications including soft robotics, prosthetics, and health monitoring devices that cover electronic skins (e-skins), wearables as well as implants have been developed within the last two decades to bridge the gap between artificial and biological systems. During this development, high-density integration of various sensing modalities into flexible electronic devices becomes vitally important to improve the perception and interaction of the human bodies and robotic appliances with external environment. As a key component in flexible electronics, the flexible thin-film transistors (TFTs) have seen significant advances, allowing for building flexible active matrices. The flexible active matrices have been integrated with distributed arrays of sensing elements, enabling the detection of signals over a large area. The integration of sensors within pixels of flexible active matrices has brought the application scenarios to a higher level of sophistication with many advanced functionalities. Herein, recent progress in the active matrix flexible sensory systems is reviewed. The materials used to construct the semiconductor channels, the dielectric layers, and the flexible substrates for the active matrices are summarized. The pixel designs and fabrication strategies for the active matrix flexible sensory systems are briefly discussed. The applications of the flexible sensory systems are exemplified by reviewing pressure sensors, temperature sensors, photodetectors, magnetic sensors, and biosignal sensors. At the end, the recent development is summarized and the vision on the further advances of flexible active matrix sensory systems is provided.

Loading...
Thumbnail Image
Item

Electrically-Pumped Wavelength-Tunable GaAs Quantum Dots Interfaced with Rubidium Atoms

2017, Huang, Huiying, Trotta, Rinaldo, Huo, Yongheng, Lettner, Thomas, Wildmann, Johannes S., Martín-Sánchez, Javier, Huber, Daniel, Reindl, Marcus, Zhang, Jiaxiang, Zallo, Eugenio, Schmidt, Oliver G., Rastelli, Armando

We demonstrate the first wavelength-tunable electrically pumped source of nonclassical light that can emit photons with wavelength in resonance with the D2 transitions of 87Rb atoms. The device is fabricated by integrating a novel GaAs single-quantum-dot light-emitting diode (LED) onto a piezoelectric actuator. By feeding the emitted photons into a 75 mm long cell containing warm 87Rb vapor, we observe slow-light with a temporal delay of up to 3.4 ns. In view of the possibility of using 87Rb atomic vapors as quantum memories, this work makes an important step toward the realization of hybrid-quantum systems for future quantum networks.

Loading...
Thumbnail Image
Item

(Metallo)porphyrins for potential materials science applications

2017-8-29, Smykalla, Lars, Mende, Carola, Fronk, Michael, Siles, Pablo F., Hietschold, Michael, Salvan, Georgeta, Zahn, Dietrich R.T., Schmidt, Oliver G., Rüffer, Tobias, Lang, Heinrich

The bottom-up approach to replace existing devices by molecular-based systems is a subject that attracts permanently increasing interest. Molecular-based devices offer not only to miniaturize the device further, but also to benefit from advanced functionalities of deposited molecules. Furthermore, the molecules itself can be tailored to allow via their self-assembly the potential fabrication of devices with an application potential, which is still unforeseeable at this time. Herein, we review efforts to use discrete (metallo)porphyrins for the formation of (sub)monolayers by surface-confined polymerization, of monolayers formed by supramolecular recognition and of thin films formed by sublimation techniques. Selected physical properties of these systems are reported as well. The application potential of those ensembles of (metallo)porphyrins in materials science is discussed.

Loading...
Thumbnail Image
Item

System-Engineered Miniaturized Robots: From Structure to Intelligence

2021, Bandari, Vineeth Kumar, Schmidt, Oliver G.

The development of small machines, once envisioned by Feynman decades ago, has stimulated significant research in materials science, robotics, and computer science. Over the past years, the field of miniaturized robotics has rapidly expanded with many research groups contributing to the numerous challenges inherent to this field. Smart materials have played a particularly important role as they have imparted miniaturized robots with new functionalities and distinct capabilities. However, despite all efforts and many available soft materials and innovative technologies, a fully autonomous system-engineered miniaturized robot (SEMR) of any practical relevance has not been developed yet. In this review, the foundation of SEMRs is discussed and six main areas (structure, motion, sensing, actuation, energy, and intelligence) which require particular efforts to push the frontiers of SEMRs further are identified. During the past decade, miniaturized robotic research has mainly relied on simplicity in design, and fabrication. A careful examination of current SEMRs that are physically, mechanically, and electrically engineered shows that they fall short in many ways concerning miniaturization, full-scale integration, and self-sufficiency. Some of these issues have been identified in this review. Some are inevitably yet to be explored, thus, allowing to set the stage for the next generation of intelligent, and autonomously operating SEMRs.

Loading...
Thumbnail Image
Item

Stamping Fabrication of Flexible Planar Micro‐Supercapacitors Using Porous Graphene Inks

2020, Li, Fei, Qu, Jiang, Li, Yang, Wang, Jinhui, Zhu, Minshen, Liu, Lixiang, Ge, Jin, Duan, Shengkai, Li, Tianming, Bandari, Vineeth Kumar, Huang, Ming, Zhu, Feng, Schmidt, Oliver G.

High performance, flexibility, safety, and robust integration for micro‐supercapacitors (MSCs) are of immense interest for the urgent demand for miniaturized, smart energy‐storage devices. However, repetitive photolithography processes in the fabrication of on‐chip electronic components including various photoresists, masks, and toxic etchants are often not well‐suited for industrial production. Here, a cost‐effective stamping strategy is developed for scalable and rapid preparation of graphene‐based planar MSCs. Combining stamps with desired shapes and highly conductive graphene inks, flexible MSCs with controlled structures are prepared on arbitrary substrates without any metal current collectors, additives, and polymer binders. The interdigitated MSC exhibits high areal capacitance up to 21.7 mF cm−2 at a current of 0.5 mA and a high power density of 6 mW cm−2 at an energy density of 5 µWh cm−2. Moreover, the MSCs show outstanding cycling performance and remarkable flexibility over 10 000 charge–discharge cycles and 300 bending cycles. In addition, the capacitance and output voltage of the MSCs are easily adjustable through interconnection with well‐defined arrangements. The efficient, rapid manufacturing of the graphene‐based interdigital MSCs with outstanding flexibility, shape diversity, and high areal capacitance shows great potential in wearable and portable electronics.

Loading...
Thumbnail Image
Item

Synthesis, spectroscopic characterization and thermogravimetric analysis of two series of substituted (metallo)tetraphenylporphyrins

2017-6-2, Al-Shewiki, Rasha K., Mende, Carola, Buschbeck, Roy, Siles, Pablo F., Schmidt, Oliver G., Rüffer, Tobias, Lang, Heinrich

Subsequent treatment of H2TPP(CO2H)4 (tetra(p-carboxylic acid phenyl)porphyrin, 1) with an excess of oxalyl chloride and HNR2 afforded H2TPP(C(O)NR2)4 (R = Me, 2; iPr, 3) with yields exceeding 80%. The porphyrins 2 and 3 could be converted to the corresponding metalloporphyrins MTPP(C(O)NR2)4 (R = Me/iPr for M = Zn (2a, 3a); Cu (2b, 3b); Ni (2c, 3c); Co (2d, 3d)) by the addition of 3 equiv of anhydrous MCl2 (M = Zn, Cu, Ni, Co) to dimethylformamide solutions of 2 and 3 at elevated temperatures. Metalloporphyrins 2a–d and 3a–d were obtained in yields exceeding 60% and have been, as well as 2 and 3, characterized by elemental analysis, electrospray ionization mass spectrometry (ESIMS) and IR and UV–vis spectroscopy. Porphyrins 2, 2a–d and 3, 3a–d are not suitable for organic molecular beam deposition (OMBD), which is attributed to their comparatively low thermal stability as determined by thermogravimetric analysis (TG) of selected representatives.

Loading...
Thumbnail Image
Item

Wearable magnetic field sensors for flexible electronics

2014, Melzer, Michael, Mönch, Jens Ingolf, Makarov, Denys, Zabila, Yevhen, Bermúdez, Gilbert Santiago Cañón, Karnaushenko, Daniil, Baunack, Stefan, Bahr, Falk, Yan, Chenglin, Kaltenbrunner, Martin, Schmidt, Oliver G.

Highly flexible bismuth Hall sensors on polymeric foils are fabricated, and the key optimization steps that are required to boost their sensitivity to the bulk value are identified. The sensor can be bent around the wrist or positioned on the finger to realize an interactive pointing device for wearable electronics. Furthermore, this technology is of great interest for the rapidly developing market of ­eMobility, for optimization of eMotors and magnetic bearings.