Search Results

Now showing 1 - 10 of 20
Loading...
Thumbnail Image
Item

Electrically-Pumped Wavelength-Tunable GaAs Quantum Dots Interfaced with Rubidium Atoms

2017, Huang, Huiying, Trotta, Rinaldo, Huo, Yongheng, Lettner, Thomas, Wildmann, Johannes S., Martín-Sánchez, Javier, Huber, Daniel, Reindl, Marcus, Zhang, Jiaxiang, Zallo, Eugenio, Schmidt, Oliver G., Rastelli, Armando

We demonstrate the first wavelength-tunable electrically pumped source of nonclassical light that can emit photons with wavelength in resonance with the D2 transitions of 87Rb atoms. The device is fabricated by integrating a novel GaAs single-quantum-dot light-emitting diode (LED) onto a piezoelectric actuator. By feeding the emitted photons into a 75 mm long cell containing warm 87Rb vapor, we observe slow-light with a temporal delay of up to 3.4 ns. In view of the possibility of using 87Rb atomic vapors as quantum memories, this work makes an important step toward the realization of hybrid-quantum systems for future quantum networks.

Loading...
Thumbnail Image
Item

Deposition of exchange-coupled dinickel complexes on gold substrates utilizing ambidentate mercapto-carboxylato ligands

2017, Börner, Martin, Blömer, Laura, Kischel, Marcus, Richter, Peter, Salvan, Georgeta, Zahn, Dietrich R. T., Siles, Pablo F., Fuentes, Maria E. N., Bufon, Carlos C. B., Grimm, Daniel, Schmidt, Oliver G., Breite, Daniel, Abel, Bernd, Kersting, Berthold

The chemisorption of magnetically bistable transition metal complexes on planar surfaces has recently attracted increased scientific interest due to its potential application in various fields, including molecular spintronics. In this work, the synthesis of mixed-ligand complexes of the type [NiII2L(L’)](ClO4), where L represents a 24-membered macrocyclic hexaazadithiophenolate ligand and L’ is a ω-mercapto-carboxylato ligand (L’ = HS(CH2)5CO2− (6), HS(CH2)10CO2− (7), or HS(C6H4)2CO2− (8)), and their ability to adsorb on gold surfaces is reported. Besides elemental analysis, IR spectroscopy, electrospray ionization mass spectrometry (ESIMS), UV–vis spectroscopy, and X-ray crystallography (for 6 and 7), the compounds were also studied by temperature-dependent magnetic susceptibility measurements (for 7 and 8) and (broken symmetry) density functional theory (DFT) calculations. An S = 2 ground state is demonstrated by temperature-dependent susceptibility and magnetization measurements, achieved by ferromagnetic coupling between the spins of the Ni(II) ions in 7 (J = +22.3 cm−1) and 8 (J = +20.8 cm−1; H = −2JS1S2). The reactivity of complexes 6–8 is reminiscent of that of pure thiolato ligands, which readily chemisorb on Au surfaces as verified by contact angle, atomic force microscopy (AFM) and spectroscopic ellipsometry measurements. The large [Ni2L] tail groups, however, prevent the packing and self-assembly of the hydrocarbon chains. The smaller film thickness of 7 is attributed to the specific coordination mode of the coligand. Results of preliminary transport measurements utilizing rolled-up devices are also reported.

Loading...
Thumbnail Image
Item

Perovskite Origami for Programmable Microtube Lasing

2021, Dong, Haiyun, Saggau, Christian Niclaas, Zhu, Minshen, Liang, Jie, Duan, Shengkai, Wang, Xiaoyu, Tang, Hongmei, Yin, Yin, Wang, Xiaoxia, Wang, Jiawei, Zhang, Chunhuan, Zhao, Yong Sheng, Ma, Libo, Schmidt, Oliver G.

Metal halide perovskites are promising materials for optoelectronic and photonic applications ranging from photovoltaics to laser devices. However, current perovskite devices are constrained to simple low-dimensional structures suffering from limited design freedom and holding up performance improvement and functionality upgrades. Here, a micro-origami technique is developed to program 3D perovskite microarchitectures toward a new type of microcavity laser. The design flexibility in 3D supports not only outstanding laser performance such as low threshold, tunable output, and high stability but also yields new functionalities like 3D confined mode lasing and directional emission in, for example, laser “array-in-array” systems. The results represent a significant step forward toward programmable microarchitectures that take perovskite optoelectronics and photonics into the 3D era. © 2021 The Authors. Advanced Functional Materials published by Wiley-VCH GmbH.

Loading...
Thumbnail Image
Item

Tuning the magneto-optical response of TbPc2 single molecule magnets by the choice of the substrate

2015, Robaschik, Peter, Fronk, Michael, Toader, Marius, Klyatskaya, Svetlana, Ganss, Fabian, Siles, Pablo F., Schmidt, Oliver G., Albrecht, Manfred, Hietschold, Michael, Ruben, Mario, Zahn, Dietrich R.T., Salvan, Georgeta

In this work, we investigated the magneto-optical response of thin films of TbPc2 on substrates which are relevant for (spin) organic field effect transistors (SiO2) or vertical spin valves (Co) in order to explore the possibility of implementing TbPc2 in magneto-electronic devices, the functionality of which includes optical reading. The optical and magneto-optical properties of TbPc2 thin films prepared by organic molecular beam deposition (OMBD) on silicon substrates covered with native oxide were investigated by variable angle spectroscopic ellipsometry (VASE) and magneto-optical Kerr effect (MOKE) spectroscopy at room temperature. The magneto-optical activity of the TbPc2 films can be significantly enhanced by one to two orders of magnitude upon changing the molecular orientation (from nearly standing molecules on SiO2/Si substrates to nearly lying molecules on perylene-3,4,9,10-tetracarboxylic dianhydride (PTCDA) templated SiO2/Si substrates) or by using metallic ferromagnetic substrates (Co).

Loading...
Thumbnail Image
Item

(Metallo)porphyrins for potential materials science applications

2017-8-29, Smykalla, Lars, Mende, Carola, Fronk, Michael, Siles, Pablo F., Hietschold, Michael, Salvan, Georgeta, Zahn, Dietrich R.T., Schmidt, Oliver G., Rüffer, Tobias, Lang, Heinrich

The bottom-up approach to replace existing devices by molecular-based systems is a subject that attracts permanently increasing interest. Molecular-based devices offer not only to miniaturize the device further, but also to benefit from advanced functionalities of deposited molecules. Furthermore, the molecules itself can be tailored to allow via their self-assembly the potential fabrication of devices with an application potential, which is still unforeseeable at this time. Herein, we review efforts to use discrete (metallo)porphyrins for the formation of (sub)monolayers by surface-confined polymerization, of monolayers formed by supramolecular recognition and of thin films formed by sublimation techniques. Selected physical properties of these systems are reported as well. The application potential of those ensembles of (metallo)porphyrins in materials science is discussed.

Loading...
Thumbnail Image
Item

System-Engineered Miniaturized Robots: From Structure to Intelligence

2021, Bandari, Vineeth Kumar, Schmidt, Oliver G.

The development of small machines, once envisioned by Feynman decades ago, has stimulated significant research in materials science, robotics, and computer science. Over the past years, the field of miniaturized robotics has rapidly expanded with many research groups contributing to the numerous challenges inherent to this field. Smart materials have played a particularly important role as they have imparted miniaturized robots with new functionalities and distinct capabilities. However, despite all efforts and many available soft materials and innovative technologies, a fully autonomous system-engineered miniaturized robot (SEMR) of any practical relevance has not been developed yet. In this review, the foundation of SEMRs is discussed and six main areas (structure, motion, sensing, actuation, energy, and intelligence) which require particular efforts to push the frontiers of SEMRs further are identified. During the past decade, miniaturized robotic research has mainly relied on simplicity in design, and fabrication. A careful examination of current SEMRs that are physically, mechanically, and electrically engineered shows that they fall short in many ways concerning miniaturization, full-scale integration, and self-sufficiency. Some of these issues have been identified in this review. Some are inevitably yet to be explored, thus, allowing to set the stage for the next generation of intelligent, and autonomously operating SEMRs.

Loading...
Thumbnail Image
Item

Antifreezing Hydrogel with High Zinc Reversibility for Flexible and Durable Aqueous Batteries by Cooperative Hydrated Cations

2020, Zhu, Minshen, Wang, Xiaojie, Tang, Hongmei, Wang, Jiawei, Hao, Qi, Liu, Lixiang, Li, Yang, Zhang, Kai, Schmidt, Oliver G.

Hydrogels are widely used in flexible aqueous batteries due to their liquid-like ion transportation abilities and solid-like mechanical properties. Their potential applications in flexible and wearable electronics introduce a fundamental challenge: how to lower the freezing point of hydrogels to preserve these merits without sacrificing hydrogels' basic advantages in low cost and high safety. Moreover, zinc as an ideal anode in aqueous batteries suffers from low reversibility because of the formation of insulative byproducts, which is mainly caused by hydrogen evolution via extensive hydration of zinc ions. This, in principle, requires the suppression of hydration, which induces an undesirable increase in the freezing point of hydrogels. Here, it is demonstrated that cooperatively hydrated cations, zinc and lithium ions in hydrogels, are very effective in addressing the above challenges. This simple but unique hydrogel not only enables a 98% capacity retention upon cooling down to −20 °C from room temperature but also allows a near 100% capacity retention with >99.5% Coulombic efficiency over 500 cycles at −20 °C. In addition, the strengthened mechanical properties of the hydrogel under subzero temperatures result in excellent durability under various harsh deformations after the freezing process. © 2019 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

Loading...
Thumbnail Image
Item

Synthesis, spectroscopic characterization and thermogravimetric analysis of two series of substituted (metallo)tetraphenylporphyrins

2017-6-2, Al-Shewiki, Rasha K., Mende, Carola, Buschbeck, Roy, Siles, Pablo F., Schmidt, Oliver G., Rüffer, Tobias, Lang, Heinrich

Subsequent treatment of H2TPP(CO2H)4 (tetra(p-carboxylic acid phenyl)porphyrin, 1) with an excess of oxalyl chloride and HNR2 afforded H2TPP(C(O)NR2)4 (R = Me, 2; iPr, 3) with yields exceeding 80%. The porphyrins 2 and 3 could be converted to the corresponding metalloporphyrins MTPP(C(O)NR2)4 (R = Me/iPr for M = Zn (2a, 3a); Cu (2b, 3b); Ni (2c, 3c); Co (2d, 3d)) by the addition of 3 equiv of anhydrous MCl2 (M = Zn, Cu, Ni, Co) to dimethylformamide solutions of 2 and 3 at elevated temperatures. Metalloporphyrins 2a–d and 3a–d were obtained in yields exceeding 60% and have been, as well as 2 and 3, characterized by elemental analysis, electrospray ionization mass spectrometry (ESIMS) and IR and UV–vis spectroscopy. Porphyrins 2, 2a–d and 3, 3a–d are not suitable for organic molecular beam deposition (OMBD), which is attributed to their comparatively low thermal stability as determined by thermogravimetric analysis (TG) of selected representatives.

Loading...
Thumbnail Image
Item

Active Matrix Flexible Sensory Systems: Materials, Design, Fabrication, and Integration

2022, Bao, Bin, Karnaushenko, Dmitriy D., Schmidt, Oliver G., Song, Yanlin, Karnaushenko, Daniil

A variety of modern applications including soft robotics, prosthetics, and health monitoring devices that cover electronic skins (e-skins), wearables as well as implants have been developed within the last two decades to bridge the gap between artificial and biological systems. During this development, high-density integration of various sensing modalities into flexible electronic devices becomes vitally important to improve the perception and interaction of the human bodies and robotic appliances with external environment. As a key component in flexible electronics, the flexible thin-film transistors (TFTs) have seen significant advances, allowing for building flexible active matrices. The flexible active matrices have been integrated with distributed arrays of sensing elements, enabling the detection of signals over a large area. The integration of sensors within pixels of flexible active matrices has brought the application scenarios to a higher level of sophistication with many advanced functionalities. Herein, recent progress in the active matrix flexible sensory systems is reviewed. The materials used to construct the semiconductor channels, the dielectric layers, and the flexible substrates for the active matrices are summarized. The pixel designs and fabrication strategies for the active matrix flexible sensory systems are briefly discussed. The applications of the flexible sensory systems are exemplified by reviewing pressure sensors, temperature sensors, photodetectors, magnetic sensors, and biosignal sensors. At the end, the recent development is summarized and the vision on the further advances of flexible active matrix sensory systems is provided.

Loading...
Thumbnail Image
Item

Recent Progress on Optoplasmonic Whispering-Gallery-Mode Microcavities

2021, Chen, Yongpeng, Yin, Yin, Ma, Libo, Schmidt, Oliver G.

Optoplasmonic whispering-gallery-mode (WGM) microcavities, consisting of plasmonic nanostructures and optical microcavities, provide excellent platforms for exploring fundamental mechanisms as well as facilitating novel optoplasmonic applications. These integrated systems support hybrid modes with both subwavelength mode confinement and high-quality factor which do not exist in either pure optical WGM microcavities or plasmonic resonators. In this progress report, geometric designs and fabrication strategies of optoplasmonic microcavities, which efficiently bridge the interaction between resonant light and plasmonic resonances, are reviewed in detail. Three types of hybrid modes in the optoplasmonic microcavities, that is, surface-plasmon-polariton whispering-gallery modes, hybrid photon–plasmon whispering-gallery modes, and heterostructured metal–dielectric whispering-gallery modes, are considered. These modes are characterized by a largely enhanced evanescent field that is referred to as a plasmon-type field in hybrid whispering-gallery modes. Moreover, the coupling effect between localized surface plasmon resonances and whispering-gallery modes is summarized. The underlying coupling mechanisms and their influence on mode shifts, Q factor, mode splitting, and line shapes of the whispering-gallery modes are discussed. Applications based on optoplasmonic WGM microcavities including enhanced sensing, nanolasing, and free-space coupling are highlighted, followed by an outlook of the opportunities and challenges in developing large-scale on-chip integrated optoplasmonic systems.