Search Results

Now showing 1 - 10 of 54
  • Item
    Engineering interface-type resistive switching in BiFeO3 thin film switches by Ti implantation of bottom electrodes
    (London : Nature Publishing Group, 2015) You, Tiangui; Ou, Xin; Niu, Gang; Bärwolf, Florian; Li, Guodong; Du, Nan; Bürger, Danilo; Skorupa, Ilona; Jia, Qi; Yu, Wenjie; Wang, Xi; Schmidt, Oliver G.; Schmidt, Heidemarie
    BiFeO3 based MIM structures with Ti-implanted Pt bottom electrodes and Au top electrodes have been fabricated on Sapphire substrates. The resulting metal-insulator-metal (MIM) structures show bipolar resistive switching without an electroforming process. It is evidenced that during the BiFeO3 thin film growth Ti diffuses into the BiFeO3 layer. The diffused Ti effectively traps and releases oxygen vacancies and consequently stabilizes the resistive switching in BiFeO3 MIM structures. Therefore, using Ti implantation of the bottom electrode, the retention performance can be greatly improved with increasing Ti fluence. For the used raster-scanned Ti implantation the lateral Ti distribution is not homogeneous enough and endurance slightly degrades with Ti fluence. The local resistive switching investigated by current sensing atomic force microscopy suggests the capability of down-scaling the resistive switching cell to one BiFeO3 grain size by local Ti implantation of the bottom electrode.
  • Item
    High-defect hydrophilic carbon cuboids anchored with Co/CoO nanoparticles as highly efficient and ultra-stable lithium-ion battery anodes
    (Cambridge : Royal Society of Chemistry, 2016) Sun, Xiaolei; Hao, Guang-Ping; Lu, Xueyi; Xi, Lixia; Liu, Bo; Si, Wenping; Ma, Chuansheng; Liu, Qiming; Zhang, Qiang; Kaskel, Stefan; Schmidt, Oliver G.
    We propose an effective strategy to engineer a unique kind of porous carbon cuboid with tightly anchored cobalt/cobalt oxide nanoparticles (PCC–CoOx) that exhibit outstanding electrochemical performance for many key aspects of lithium-ion battery electrodes. The host carbon cuboid features an ultra-polar surface reflected by its high hydrophilicity and rich surface defects due to high heteroatom doping (N-/O-doping both higher than 10 atom%) as well as hierarchical pore systems. We loaded the porous carbon cuboid with cobalt/cobalt oxide nanoparticles through an impregnation process followed by calcination treatment. The resulting PCC–CoOx anode exhibits superior rate capability (195 mA h g−1 at 20 A g−1) and excellent cycling stability (580 mA h g−1 after 2000 cycles at 1 A g−1 with only 0.0067% capacity loss per cycle). Impressively, even after an ultra-long cycle life exceeding 10 000 cycles at 5 A g−1, the battery can recover to 1050 mA h g−1 at 0.1 A g−1, perhaps the best performance demonstrated so far for lithium storage in cobalt oxide-based electrodes. This study provides a new perspective to engineer long-life, high-power metal oxide-based electrodes for lithium-ion batteries through controlling the surface chemistry of carbon host materials.
  • Item
    Kontrolle supraleitender Wirbeldynamik in Nb rolled-up-Nanostrukturen : Laufzeit des Vorhabens: 01.04.2013-31.03.2016
    (Hannover : Technische Informationsbibliothek (TIB), 2016) Fomin, Vladimir M.; Schmidt, Oliver G.; Bürger, Danilo; Lösch, Sören; Rezaev, Roman; Levchenko, Evgenii; Dusaev, Renat
    Der Bericht enthält eine vollständige Beschreibung des wissenschaftlichen Forschungsprojekts, das durch die bilaterale BMBF-Russland-Forschungsförderung 01 DJ13009 finanziert wurde. Die Projektdauer wird in drei Perioden unterteilt, die jeweils dem Jahr der Umsetzung entsprechen. Die grundlegende Aufgabe des Projekts war es zu untersuchen, wie die Nanostrukturierung von Materialen die supraleitenden Eigenschaften ändert. Auf Basis der zeitabhängigen Ginzburg-Landau Theorie wurde das mathematische Modell der supraleitenden Phänomene in krummlinigen Nanostrukturen erstellt. Die Validierung des Modells wurde durch Vergleich mit verfügbaren experimentellen Daten für planare Strukturen durchgeführt. Weiterhin wurde das erarbeitete Modell zur Untersuchung der Wirbeldynamik in krummlinigen Nanostrukturen in einem Magnetfeld angewendet. Der Einfluss von Pinning-Zentren und die Dissipation der Energie in Abhängigkeit von den Randbedingungen wurden analysiert. Die im Rahmen des Projekts erhaltenen wissenschaftlichen Ergebnisse zeigen deutlich die Vorteile der gekrümmten supraleitenden Nanostrukturen in modernen Anwendungen der Supraleitung. Während des Projekts wurde eine innovative Software entwickelt, welche als Instrument für das virtuelle Design von Experimenten in supraleitenden gekrümmten Nano- und Mikrostrukturen genutzt werden kann.
  • Item
    Biofunctionalized self-propelled micromotors as an alternative on-chip concentrating system
    (Cambridge : Royal Society of Chemistry, 2014) Restrepo-Pérez, Laura; Meyer, Anne K.; Helbig, Linda; Sanchez, Samuel; Schmidt, Oliver G.
    Sample pre-concentration is crucial to achieve high sensitivity and low detection limits in lab-on-a-chip devices. Here, we present a system in which self-propelled catalytic micromotors are biofunctionalized and trapped acting as an alternative concentrating mechanism. This system requires no external energy source, which facilitates integration and miniaturization.
  • Item
    Imperceptible Supercapacitors with High Area-Specific Capacitance
    (Weinheim : Wiley-VCH, 2021) Ge, Jin; Zhu, Minshen; Eisner, Eric; Yin, Yin; Dong, Haiyun; Karnaushenko, Dmitriy D.; Karnaushenko, Daniil; Zhu, Feng; Ma, Libo; Schmidt, Oliver G.
    Imperceptible electronics will make next-generation healthcare and biomedical systems thinner, lighter, and more flexible. While other components are thoroughly investigated, imperceptible energy storage devices lag behind because the decrease of thickness impairs the area-specific energy density. Imperceptible supercapacitors with high area-specific capacitance based on reduced graphene oxide/polyaniline (RGO/PANI) composite electrodes and polyvinyl alcohol (PVA)/H2SO4 gel electrolyte are reported. Two strategies to realize a supercapacitor with a total device thickness of 5 µm—including substrate, electrode, and electrolyte—and an area-specific capacitance of 36 mF cm−2 simultaneously are implemented. First, the void volume of the RGO/PANI electrodes through mechanical compression is reduced, which decreases the thickness by 83% while retaining 89% of the capacitance. Second, the PVA-to-H2SO4 mass ratio is decreased to 1:4.5, which improves the ion conductivity by 5000% compared to the commonly used PVA/H2SO4 gel. Both advantages enable a 2 µm-thick gel electrolyte for planar interdigital supercapacitors. The impressive electromechanical stability of the imperceptible supercapacitors by wrinkling the substrate to produce folds with radii of 6 µm or less is demonstrated. The supercapacitors will be meaningful energy storage modules for future self-powered imperceptible electronics.
  • Item
    Purely antiferromagnetic magnetoelectric random access memory
    (London : Nature Publishing Group, 2017) Kosub, Tobias; Kopte, Martin; Hühne, Ruben; Appel, Patrick; Shields, Brendan; Maletinsky, Patrick; Hübner, René; Liedke, Maciej Oskar; Fassbender, Jürgen; Schmidt, Oliver G.; Makarov, Denys
    Magnetic random access memory schemes employing magnetoelectric coupling to write binary information promise outstanding energy efficiency. We propose and demonstrate a purely antiferromagnetic magnetoelectric random access memory (AF-MERAM) that offers a remarkable 50-fold reduction of the writing threshold compared with ferromagnet-based counterparts, is robust against magnetic disturbances and exhibits no ferromagnetic hysteresis losses. Using the magnetoelectric antiferromagnet Cr2O3, we demonstrate reliable isothermal switching via gate voltage pulses and all-electric readout at room temperature. As no ferromagnetic component is present in the system, the writing magnetic field does not need to be pulsed for readout, allowing permanent magnets to be used. Based on our prototypes, we construct a comprehensive model of the magnetoelectric selection mechanisms in thin films of magnetoelectric antiferromagnets, revealing misfit induced ferrimagnetism as an important factor. Beyond memory applications, the AF-MERAM concept introduces a general all-electric interface for antiferromagnets and should find wide applicability in antiferromagnetic spintronics.
  • Item
    Compact helical antenna for smart implant applications
    (London : Nature Publishing Group, 2015) Karnaushenko, Dmitriy D.; Karnaushenko, Daniil; Makarov, Denys; Schmidt, Oliver G.
    Smart implants are envisioned to revolutionize personal health care by assessing physiological processes, for example, upon wound healing, and communicating these data to a patient or medical doctor. The compactness of the implants is crucial to minimize discomfort during and after implantation. The key challenge in realizing small-sized smart implants is high-volume cost- and time-efficient fabrication of a compact but efficient antenna, which is impedance matched to 50 Ω, as imposed by the requirements of modern electronics. Here, we propose a novel route to realize arrays of 5.5-mm-long normal mode helical antennas operating in the industry-scientific-medical radio bands at 5.8 and 2.4 GHz, relying on a self-assembly process that enables large-scale high-yield fabrication of devices. We demonstrate the transmission and receiving signals between helical antennas and the communication between an antenna and a smartphone. Furthermore, we successfully access the response of an antenna embedded in a tooth, mimicking a dental implant. With a diameter of ~0.2 mm, these antennas are readily implantable using standard medical syringes, highlighting their suitability for in-body implant applications.
  • Item
    IRONSperm: Sperm-templated soft magnetic microrobots
    (Washington, DC : American Association for the Advancement of Science, 2020) Magdanz, Veronika; Khalil, Islam S.M.; Simmchen, Juliane; Furtado, Guilherme P.; Mohanty, Sumit; Gebauer, Johannes; Xu, Haifeng; Klingner, Anke; Aziz, Azaam; Medina-Sánchez, Mariana; Schmidt, Oliver G.; Misra, Sarthak
    We develop biohybrid magnetic microrobots by electrostatic self-assembly of nonmotile sperm cells and magnetic nanoparticles. Incorporating a biological entity into microrobots entails many functional advantages beyond shape templating, such as the facile uptake of chemotherapeutic agents to achieve targeted drug delivery. We present a single-step electrostatic self-assembly technique to fabricate IRONSperms, soft magnetic microswimmers that emulate the motion of motile sperm cells. Our experiments and theoretical predictions show that the swimming speed of IRONSperms exceeds 0.2 body length/s (6.8 ± 4.1 µm/s) at an actuation frequency of 8 Hz and precision angle of 45°. We demonstrate that the nanoparticle coating increases the acoustic impedance of the sperm cells and enables localization of clusters of IRONSperm using ultrasound feedback. We also confirm the biocompatibility and drug loading ability of these microrobots, and their promise as biocompatible, controllable, and detectable biohybrid tools for in vivo targeted therapy.
  • Item
    Carbonate-based Janus micromotors moving in ultra-light acidic environment generated by HeLa cells in situ
    (London : Nature Publishing Group, 2016) Guix, Maria; Meyer, Anne K.; Koch, Britta; Schmidt, Oliver G.
    Novel approaches to develop naturally-induced drug delivery in tumor environments in a deterministic and controlled manner have become of growing interest in recent years. Different polymeric-based microstructures and other biocompatible substances have been studied taking advantage of lactic acidosis phenomena in tumor cells, which decrease the tumor extracellular pH down to 6.8. Micromotors have recently demonstrated a high performance in living systems, revealing autonomous movement in the acidic environment of the stomach or moving inside living cells by using acoustic waves, opening the doors for implementation of such smart microengines into living entities. The need to develop biocompatible motors which are driven by natural fuel sources inherently created in biological systems has thus become of crucial importance. As a proof of principle, we here demonstrate calcium carbonate Janus particles moving in extremely light acidic environments (pH 6.5), whose motion is induced in conditioned acidic medium generated by HeLa cells in situ. Our system not only obviates the need for an external fuel, but also presents a selective activation of the micromotors which promotes their motion and consequent dissolution in presence of a quickly propagating cell source (i.e. tumor cells), therefore inspiring new micromotor configurations for potential drug delivery systems.
  • Item
    Magnetic suspension array technology: Controlled synthesis and screening in microfluidic networks
    (Hoboken, NJ : Wiley, 2016) Lin, Gungun; Karnaushenko, Dmitriy D.; Cañón Bermúdez, Gilbert Santiago; Schmidt, Oliver G.; Makarov, Denys
    Information tagging and processing are vital in information‐intensive applications, e.g., telecommunication and high‐throughput drug screening. Magnetic suspension array technology may offer intrinsic advantages to screening applications by enabling high distinguishability, the ease of code generation, and the feasibility of fast code readout, though the practical applicability of magnetic suspension array technology remains hampered by the lack of quality administration of encoded microcarriers. Here, a logic‐controlled microfluidic system enabling controlled synthesis of magnetic suspension arrays in multiphase flow networks is realized. The smart and compact system offers a practical solution for the quality administration and screening of encoded magnetic microcarriers and addresses the universal need of process control for synthesis in microfluidic networks, i.e., on‐demand creation of droplet templates for high information capacity. The demonstration of magnetic suspension array technology enabled by magnetic in‐flow cytometry opens the avenue toward point‐of‐care multiplexed bead‐based assays, clinical diagnostics, and drug discovery.