Search Results

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Item

High-rate amorphous SnO2 nanomembrane anodes for Li-ion batteries with a long cycling life

2014, Liu, Xianghong, Zhang, Jun, Si, Wenping, Xi, Lixia, Oswald, Steffen, Yan, Chenglin, Schmidt, Oliver G.

Amorphous SnO2 nanomembranes as anodes for lithium ion batteries demonstrate a long cycling life of 1000 cycles at 1600 mA g−1 with a high reversible capacity of 854 mA h g−1 and high rate capability up to 40 A g−1. The superior performance is because of the structural features of the amorphous SnO2 nanomembranes. The nanoscale thickness provides considerably reduced diffusion paths for Li+. The amorphous structure can accommodate the strain of lithiation/delithiation, especially during the initial lithiation. More importantly, the mechanical feature of deformation can buffer the strain of repeated lithiation/delithiation, thus putting off pulverization. In addition, the two-dimensional transport pathways in between nanomembranes make the pseudo-capacitance more prominent. The encouraging results demonstrate the significant potential of nanomembranes for high power batteries.