Search Results

Now showing 1 - 2 of 2
  • Item
    Newly formed downflow lanes in exploding granules in the solar photosphere
    (Les Ulis : EDP Sciences, 2021) Ellwarth, M.; Fischer, C.E.; Vitas, N.; Schmiz, S.; Schmidt, W.
    Context. Exploding granules have drawn renewed interest because of their interaction with the magnetic field (either emerging or already present). Especially the newly forming downflow lanes developing in their centre seem to be eligible candidates for the intensification of magnetic fields. We analyse spectroscopic data from two different instruments in order to study the intricate velocity pattern within the newly forming downflow lanes in detail. Aims. We aim to examine general properties of a number of exploding granules, such as their lifetime and extend. To gain a better understanding of the formation process of the developing intergranular lane in exploding granules, we study the temporal evolution and height dependence of the line-of-sight velocities at their formation location. Additionally, we search for evidence that exploding granules act as acoustic sources. Methods. We investigated the evolution of several exploding granules using data taken with the Interferometric Bidimensional Spectrometer and the Imaging Magnetograph eXperiment. Velocities for different heights of the solar atmosphere were determined by computing bisectors of the Fe I 6173.0 Å and the Fe I 5250.2 Å lines. We performed a wavelet analysis to study the intensity and velocity oscillations within and around exploding granules. We also compared our observational findings with predictions of numerical simulations. Results. Exploding granules have significantly longer lifetimes (10 to 15 min) than regular granules. Exploding granules larger than 3.8″ form an independent intergranular lane during their decay phase, while smaller granules usually fade away or disappear into the intergranular area (we find only one exception of a smaller exploding granule that also forms an intergranular lane). For all exploding granules that form a new intergranular downflow lane, we find a temporal height-dependent shift with respect to the maximum of the downflow velocity. Our suggestion that this results from a complex atmospheric structure within the newly forming downflow lane is supported by the comparison with synthesised profiles inferred from the simulations. We found an enhanced wavelet power with periods between 120 s to 190 s seen in the intensity and velocity oscillations of high photospheric or chromospheric spectral lines in the region of the dark core of an exploding granule. © M. Ellwarth et al. 2021.
  • Item
    The Polarimetric and Helioseismic Imager on Solar Orbiter
    (Les Ulis : EDP Sciences , 2020) Solanki, S.K.; del Toro Iniesta, J.C.; Woch, J.; Gandorfer, A.; Hirzberger, J.; Alvarez-Herrero, A.; Appourchaux, T.; Martínez Pillet, V.; Pérez-Grande, I.; Sanchis Kilders, E.; Schmidt, W.; Garranzo-García, D.; Laguna, H.; Martín, J.A.; Navarro, R.; Villanueva, J.; Núñez Peral, A.; Royo, M.; Sánchez, A.; Silva-López, M.; Fourmond, J.-J.; Berkefeld, Th.; Ruiz de Galarreta, C.; Bouzit, M.; Hervier, V.; Le Clec'h, J.C.; Szwec, N.; Chaigneau, M.; Buttice, V.; Volkmer, R.; Dominguez-Tagle, C.; Philippon, A.; Baumgartner, J.; Boumier, P.; Le Cocguen, R.; Baranjuk, G.; Bell, A.; Heidecke, F.; Maue, T.; Blanco Rodríguez, J.; Nakai, E.; Scheiffelen, T.; Sigwarth, M.; Soltau, D.; Domingo, V.; Fiethe, B.; Ferreres Sabater, A.; Gasent Blesa, J.L.; Rodríguez Martínez, P.; Osorno Caudel, D.; Bosch, J.; Casas, A.; Carmona, M.; Gómez Cama, J.M.; Herms, A.; Roma, D.; Guan, Y.; Alonso, G.; Gómez-Sanjuan, A.; Piqueras, J.; Torralbo, I.; Lange, T.; Michel, H.; Michalik, H.; Bonet, J.A.; Fahmy, S.; Müller, D.; Zouganelis, I.; Deutsch, W.; Busse, D.; Fernandez-Rico, G.; Grauf, B.; Gizon, L.; Heerlein, K.; Kolleck, M.; Lagg, A.; Meller, R.; Müller, R.; Schühle, U.; Staub, J.; Enge, R.; Albert, K.; Alvarez Copano, M.; Beckmann, U.; Bischoff, J.; Frahm, S.; Germerott, D.; Guerrero, L.; Löptien, B.; Meierdierks, T.; Oberdorfer, D.; Papagiannaki, I.; Ramanath, S.; Bellot Rubio, L.R.; Schou, J.; Werner, S.; Yang, D.; Zerr, A.; Bergmann, M.; Bochmann, J.; Heinrichs, J.; Meyer, S.; Monecke, M.; Müller, M.-F.; Cobos Carracosa, J.P.; Sperling, M.; Álvarez García, D.; Aparicio, B.; Balaguer Jiménez, M.; Girela, F.; Hernández Expósito, D.; Herranz, M.; Labrousse, P.; López Jiménez, A.; Orozco Suárez, D.; Ramos, J.L.; Barandiarán, J.; Vera, I.; Bastide, L.; Campuzano, C.; Cebollero, M.; Dávila, B.; Fernández-Medina, A.; García Parejo, P.
    This paper describes the Polarimetric and Helioseismic Imager on the Solar Orbiter mission (SO/PHI), the first magnetograph and helioseismology instrument to observe the Sun from outside the Sun-Earth line. It is the key instrument meant to address the top-level science question: How does the solar dynamo work and drive connections between the Sun and the heliosphere? SO/PHI will also play an important role in answering the other top-level science questions of Solar Orbiter, as well as hosting the potential of a rich return in further science. SO/PHI measures the Zeeman effect and the Doppler shift in the FeI 617.3nm spectral line. To this end, the instrument carries out narrow-band imaging spectro-polarimetry using a tunable LiNbO_3 Fabry-Perot etalon, while the polarisation modulation is done with liquid crystal variable retarders (LCVRs). The line and the nearby continuum are sampled at six wavelength points and the data are recorded by a 2kx2k CMOS detector. To save valuable telemetry, the raw data are reduced on board, including being inverted under the assumption of a Milne-Eddington atmosphere, although simpler reduction methods are also available on board. SO/PHI is composed of two telescopes; one, the Full Disc Telescope (FDT), covers the full solar disc at all phases of the orbit, while the other, the High Resolution Telescope (HRT), can resolve structures as small as 200km on the Sun at closest perihelion. The high heat load generated through proximity to the Sun is greatly reduced by the multilayer-coated entrance windows to the two telescopes that allow less than 4% of the total sunlight to enter the instrument, most of it in a narrow wavelength band around the chosen spectral line.