Search Results

Now showing 1 - 2 of 2
  • Item
    Integrated molecular diode as 10 MHz half-wave rectifier based on an organic nanostructure heterojunction
    ([London] : Nature Publishing Group UK, 2020) Li, Tianming; Bandari, Vineeth Kumar; Hantusch, Martin; Xin, Jianhui; Kuhrt, Robert; Ravishankar, Rachappa; Xu, Longqian; Zhang, Jidong; Knupfer, Martin; Zhu, Feng; Yan, Donghang; Schmidt, Oliver G.
    Considerable efforts have been made to realize nanoscale diodes based on single molecules or molecular ensembles for implementing the concept of molecular electronics. However, so far, functional molecular diodes have only been demonstrated in the very low alternating current frequency regime, which is partially due to their extremely low conductance and the poor degree of device integration. Here, we report about fully integrated rectifiers with microtubular soft-contacts, which are based on a molecularly thin organic heterojunction and are able to convert alternating current with a frequency of up to 10 MHz. The unidirectional current behavior of our devices originates mainly from the intrinsically different surfaces of the bottom planar and top microtubular Au electrodes while the excellent high frequency response benefits from the charge accumulation in the phthalocyanine molecular heterojunction, which not only improves the charge injection but also increases the carrier density.
  • Item
    Engineering microrobots for targeted cancer therapies from a medical perspective
    (Berlin : Springer Nature, 2020) Schmidt, Christine K.; Medina-Sánchez, Mariana; Edmondson, Richard J.; Schmidt, Oliver G.
    Systemic chemotherapy remains the backbone of many cancer treatments. Due to its untargeted nature and the severe side effects it can cause, numerous nanomedicine approaches have been developed to overcome these issues. However, targeted delivery of therapeutics remains challenging. Engineering microrobots is increasingly receiving attention in this regard. Their functionalities, particularly their motility, allow microrobots to penetrate tissues and reach cancers more efficiently. Here, we highlight how different microrobots, ranging from tailor-made motile bacteria and tiny bubble-propelled microengines to hybrid spermbots, can be engineered to integrate sophisticated features optimised for precision-targeting of a wide range of cancers. Towards this, we highlight the importance of integrating clinicians, the public and cancer patients early on in the development of these novel technologies.