Search Results

Now showing 1 - 2 of 2
  • Item
    High yield and ultrafast sources of electrically triggered entangled-photon pairs based on strain-tunable quantum dots
    (London : Nature Publishing Group, 2015) Zhang, Jiaxiang; Wildmann, Johannes S.; Ding, Fei; Trotta, Rinaldo; Huo, Yongheng; Zallo, Eugenio; Huber, Daniel; Rastelli, Armando; Schmidt, Oliver G.
    Triggered sources of entangled photon pairs are key components in most quantum communication protocols. For practical quantum applications, electrical triggering would allow the realization of compact and deterministic sources of entangled photons. Entangled-light-emitting-diodes based on semiconductor quantum dots are among the most promising sources that can potentially address this task. However, entangled-light-emitting-diodes are plagued by a source of randomness, which results in a very low probability of finding quantum dots with sufficiently small fine structure splitting for entangled-photon generation (∼10−2). Here we introduce strain-tunable entangled-light-emitting-diodes that exploit piezoelectric-induced strains to tune quantum dots for entangled-photon generation. We demonstrate that up to 30% of the quantum dots in strain-tunable entangled-light-emitting-diodes emit polarization-entangled photons. An entanglement fidelity as high as 0.83 is achieved with fast temporal post selection. Driven at high speed, that is 400 MHz, strain-tunable entangled-light-emitting-diodes emerge as promising devices for high data-rate quantum applications.
  • Item
    Imperceptible magnetoelectronics
    (London : Nature Publishing Group, 2015) Melzer, Michael; Kaltenbrunner, Martin; Makarov, Denys; Karnaushenko, Dmitriy; Karnaushenko, Daniil; Sekitani, Tsuyoshi; Someya, Takao; Schmidt, Oliver G.
    Future electronic skin aims to mimic nature’s original both in functionality and appearance. Although some of the multifaceted properties of human skin may remain exclusive to the biological system, electronics opens a unique path that leads beyond imitation and could equip us with unfamiliar senses. Here we demonstrate giant magnetoresistive sensor foils with high sensitivity, unmatched flexibility and mechanical endurance. They are <2 μm thick, extremely flexible (bending radii <3 μm), lightweight (≈3 g m−2) and wearable as imperceptible magneto-sensitive skin that enables proximity detection, navigation and touchless control. On elastomeric supports, they can be stretched uniaxially or biaxially, reaching strains of >270% and endure over 1,000 cycles without fatigue. These ultrathin magnetic field sensors readily conform to ubiquitous objects including human skin and offer a new sense for soft robotics, safety and healthcare monitoring, consumer electronics and electronic skin devices.