Search Results

Now showing 1 - 7 of 7
Loading...
Thumbnail Image
Item

Pseudo-HE images derived from CARS/TPEF/SHG multimodal imaging in combination with Raman-spectroscopy as a pathological screening tool

2016, Bocklitz, Thomas W., Salah, Firas Subhi, Vogler, Nadine, Heuke, Sandro, Chernavskaia, Olga, Schmidt, Carsten, Waldner, Maximilian J., Greten, Florian R., Bräuer, Rolf, Schmitt, Michael, Stallmach, Andreas, Petersen, Iver, Popp, Jürgen

Due to the steadily increasing number of cancer patients worldwide the early diagnosis and treatment of cancer is a major field of research. The diagnosis of cancer is mostly performed by an experienced pathologist via the visual inspection of histo-pathological stained tissue sections. To save valuable time, low quality cryosections are frequently analyzed with diagnostic accuracies that are below those of high quality embedded tissue sections. Thus, alternative means have to be found that enable for fast and accurate diagnosis as the basis of following clinical decision making.

Loading...
Thumbnail Image
Item

A rigid coherent anti-Stokes Raman scattering endoscope with high resolution and a large field of view

2018, Zirak, P., Matz, Gregor, Messerschmidt, Bernhard, Meyer, Tobias, Schmitt, Michael, Popp, Jürgen, Uckermann, Ortrud, Galli, R., Kirsch, Matthias, Winterhalder, M.J., Zumbusch, A.

Nonlinear optical endoscopy is an attractive technique for biomedical imaging since it promises to give access to high resolution imaging in vivo. Among the various techniques used for endoscopic contrast generation, coherent anti-Stokes Raman scattering (CARS) is especially interesting. CARS endoscopy allows molecule specific imaging of unlabeled samples. In this contribution, we describe the design, implementation, and experimental characterization of a rigid, compact CARS endoscope with a spatial resolution of 750 nm over a field of view of roughly 250 μm. Omission of the relay optics and use of a gradient index lens specifically designed for this application allow one to realize these specifications in an endoscopic unit which is 2.2 mm wide over a length of 187 mm, making clinical applications during surgical interventions possible. Multimodal use of the endoscope is demonstrated with images of samples with neurosurgical relevance.Nonlinear optical endoscopy is an attractive technique for biomedical imaging since it promises to give access to high resolution imaging in vivo. Among the various techniques used for endoscopic contrast generation, coherent anti-Stokes Raman scattering (CARS) is especially interesting. CARS endoscopy allows molecule specific imaging of unlabeled samples. In this contribution, we describe the design, implementation, and experimental characterization of a rigid, compact CARS endoscope with a spatial resolution of 750 nm over a field of view of roughly 250 μm. Omission of the relay optics and use of a gradient index lens specifically designed for this application allow one to realize these specifications in an endoscopic unit which is 2.2 mm wide over a length of 187 mm, making clinical applications during surgical interventions possible. Multimodal use of the endoscope is demonstrated with images of samples with neurosurgical relevance.

Loading...
Thumbnail Image
Item

Shape-Memory Metallopolymer Networks Based on a Triazole–Pyridine Ligand

2019, Meurer, Josefine, Hniopek, Julian, Zechel, Stefan, Enke, Marcel, Vitz, Jürgen, Schmitt, Michael, Popp, Jürgen, Hager, Martin D., Schubert, Ulrich S.

Shape memory polymers represent an interesting class of stimuli-responsive polymers. With their ability to memorize and recover their original shape, they could be useful in almost every area of our daily life. We herein present the synthesis of shape-memory metallopolymers in which the switching unit is designed by using bis(pyridine–triazole) metal complexes. The polymer networks were synthesized via free radical polymerization of methyl-, ethyl- or butyl-methacrylate, tri(ethylene glycol) dimethacrylate and a methacrylate moiety of the triazole–pyridine ligand. By the addition of zinc(II) or cobalt(II) acetate it was possible to achieve metallopolymer networks featuring shape-memory abilities. The successful formation of the metal-ligand complex was proven by Fourier transform infrared (FT-IR) spectroscopy and by 1H NMR spectroscopy. Furthermore, the shape-recovery behavior was studied in detailed fashion and even triple-shape memory behavior could be revealed.

Loading...
Thumbnail Image
Item

Raman imaging of changes in the polysaccharides distribution in the cell wall during apple fruit development and senescence

2016, Szymańska-Chargot, Monika, Chylińska, Monika, Pieczywek, Piotr M., Rösch, Petra, Schmitt, Michael, Popp, Jürgen, Zdunek, Artur

Main conclusion Du ring on-tree ripening, the pectin distribution changed from polydispersed in cell wall to cumulated in cell wall corners. During apple storage, the pectin distribution returned to evenly dispersed along the cell wall. The plant cell wall influences the texture properties of fruit tissue for example apples become softer during ripening and postharvest storage. This softening process is believed to be mainly connected with changes in the cell wall composition due to polysaccharides undergoing an enzymatic degradation. These changes in polysaccharides are currently mainly investigated via chemical analysis or monoclonal labeling. Here, we propose the application of Raman microscopy for evaluating the changes in the polysaccharide distribution in the cell wall of apples during both ripening and postharvest storage. The apples were harvested 1 month and 2 weeks before optimal harvest date as well as at the optimal harvest date. The apples harvested at optimal harvest date were stored for 3 months. The Raman maps, as well as the chemical analysis were obtained for each harvest date and after 1, 2 and 3 months of storage, respectively. The analysis of the Raman maps showed that the pectins in the middle lamella and primary cell wall undergo a degradation. The changes in cellulose and hemicellulose were less pronounced. These findings were confirmed by the chemical analysis results. During development changes of pectins from a polydispersed form in the cell walls to a cumulated form in cell wall corners could be observed. In contrast after 3 months of apple storage we could observe an substantial pectin decrease. The obtained results demonstrate that Raman chemical imaging might be a very useful tool for a first identification of compositional changes in plant tissue during their development. The great advantage Raman microspectroscopy offers is the simultaneous localization and identification of polysaccharides within the cell wall and plant tissue.

Loading...
Thumbnail Image
Item

Comparison of hyperspectral coherent Raman scattering microscopies for biomedical applications

2018, Bocklitz, Thomas W., Meyer, Tobias, Schmitt, Michael, Rimke, Ingo, Hoffmann, Franziska, von Eggeling, Ferdinand, Ernst, G., Guntinas-Lichius, Orlando, Popp, Jürgen

Raman scattering based imaging represents a very powerful optical tool for biomedical diagnostics. Different Raman signatures obtained by distinct tissue structures and disease induced changes provoke sophisticated analysis of the hyperspectral Raman datasets. While the analysis of linear Raman spectroscopic tissue data is quite established, the evaluation of hyperspectral nonlinear Raman data has not yet been evaluated in great detail. The two most common nonlinear Raman methods are CARS (coherent anti-Stokes Raman scattering) and SRS (stimulated Raman scattering) spectroscopy. Specifically the linear concentration dependence of SRS as compared to the quadratic dependence of CARS has fostered the application of SRS tissue imaging. Here, we applied spectral processing to hyperspectral SRS and CARS data for tissue characterization. We could demonstrate for the first time that similar cluster distributions can be obtained for multispectral CARS and SRS data but that clustering is based on different spectral features due to interference effects in CARS and the different concentration dependence of CARS and SRS. It is shown that a direct combination of CARS and SRS data does not improve the clustering results.

Loading...
Thumbnail Image
Item

Nonresonant Raman spectroscopy of isolated human retina samples complying with laser safety regulations for in vivo measurements

2019, Stiebing, Clara, Schie, Iwan W., Knorr, Florian, Schmitt, Michael, Keijzer, Nanda, Kleemann, Robert, Jahn, Izabella J., Jahn, Martin, Kiliaan, Amanda J., Ginner, Laurin, Lichtenegger, Antonia, Drexler, Wolfgang, Leitgeb, Rainer A., Popp, Jürgen

Retinal diseases, such as age-related macular degeneration, are leading causes of vision impairment, increasing in incidence worldwide due to an aging society. If diagnosed early, most cases could be prevented. In contrast to standard ophthalmic diagnostic tools, Raman spectroscopy can provide a comprehensive overview of the biochemical composition of the retina in a label-free manner. A proof of concept study of the applicability of nonresonant Raman spectroscopy for retinal investigations is presented. Raman imaging provides valuable insights into the molecular composition of an isolated ex vivo human retina sample by probing the entire molecular fingerprint, i.e., the lipid, protein, carotenoid, and nucleic acid content. The results are compared to morphological information obtained by optical coherence tomography of the sample. The challenges of in vivo Raman studies due to laser safety limitations and predefined optical parameters given by the eye itself are explored. An in-house built setup simulating the optical pathway in the human eye was developed and used to demonstrate that even under laser safety regulations and the above-mentioned optical restrictions, Raman spectra of isolated ex vivo human retinas can be recorded. The results strongly support that in vivo studies using nonresonant Raman spectroscopy are feasible and that these studies provide comprehensive molecular information of the human retina. © The Authors. Published by SPIE.

Loading...
Thumbnail Image
Item

Multimodal Nonlinear Microscopy for Therapy Monitoring of Cold Atmospheric Plasma Treatment

2019, Meyer, Tobias, Bae, Hyeonsoo, Hasse, Sybille, Winter, Jörn, von Woedtke, Thomas, Schmitt, Michael, Weltmann, Klaus-Dieter, Popp, Jürgen

Here we report on a non-linear spectroscopic method for visualization of cold atmospheric plasma (CAP)-induced changes in tissue for reaching a new quality level of CAP application in medicine via online monitoring of wound or cancer treatment. A combination of coherent anti-Stokes Raman scattering (CARS), two-photon fluorescence lifetime imaging (2P-FLIM) and second harmonic generation (SHG) microscopy has been used for non-invasive and label-free detection of CAP-induced changes on human skin and mucosa samples. By correlation with histochemical staining, the observed local increase in fluorescence could be assigned to melanin. CARS and SHG prove the integrity of the tissue structure, visualize tissue morphology and composition. The influence of plasma effects by variation of plasma parameters e.g., duration of treatment, gas composition and plasma source has been evaluated. Overall quantitative spectroscopic markers could be identified for a direct monitoring of CAP-treated tissue areas, which is very important for translating CAPs into clinical routine.