Search Results

Now showing 1 - 3 of 3
  • Item
    FLIM data analysis based on Laguerre polynomial decomposition and machine-learning
    (Bellingham, Wash. : SPIE, 2021) Guo, Shuxia; Silge, Anja; Bae, Hyeonsoo; Tolstik, Tatiana; Meyer, Tobias; Matziolis, Georg; Schmitt, Michael; Popp, Jürgen; Bocklitz, Thomas
    Significance: The potential of fluorescence lifetime imaging microscopy (FLIM) is recently being recognized, especially in biological studies. However, FLIM does not directly measure the lifetimes, rather it records the fluorescence decay traces. The lifetimes and/or abundances have to be estimated from these traces during the phase of data processing. To precisely estimate these parameters is challenging and requires a well-designed computer program. Conventionally employed methods, which are based on curve fitting, are computationally expensive and limited in performance especially for highly noisy FLIM data. The graphical analysis, while free of fit, requires calibration samples for a quantitative analysis. Aim: We propose to extract the lifetimes and abundances directly from the decay traces through machine learning (ML). Approach: The ML-based approach was verified with simulated testing data in which the lifetimes and abundances were known exactly. Thereafter, we compared its performance with the commercial software SPCImage based on datasets measured from biological samples on a time-correlated single photon counting system. We reconstructed the decay traces using the lifetime and abundance values estimated by ML and SPCImage methods and utilized the root-mean-squared-error (RMSE) as marker. Results: The RMSE, which represents the difference between the reconstructed and measured decay traces, was observed to be lower for ML than for SPCImage. In addition, we could demonstrate with a three-component analysis the high potential and flexibility of the ML method to deal with more than two lifetime components.
  • Item
    A rigid coherent anti-Stokes Raman scattering endoscope with high resolution and a large field of view
    (College Park : American Institute of Physics, 2018) Zirak, P.; Matz, Gregor; Messerschmidt, Bernhard; Meyer, Tobias; Schmitt, Michael; Popp, Jürgen; Uckermann, Ortrud; Galli, R.; Kirsch, Matthias; Winterhalder, M.J.; Zumbusch, A.
    Nonlinear optical endoscopy is an attractive technique for biomedical imaging since it promises to give access to high resolution imaging in vivo. Among the various techniques used for endoscopic contrast generation, coherent anti-Stokes Raman scattering (CARS) is especially interesting. CARS endoscopy allows molecule specific imaging of unlabeled samples. In this contribution, we describe the design, implementation, and experimental characterization of a rigid, compact CARS endoscope with a spatial resolution of 750 nm over a field of view of roughly 250 μm. Omission of the relay optics and use of a gradient index lens specifically designed for this application allow one to realize these specifications in an endoscopic unit which is 2.2 mm wide over a length of 187 mm, making clinical applications during surgical interventions possible. Multimodal use of the endoscope is demonstrated with images of samples with neurosurgical relevance.Nonlinear optical endoscopy is an attractive technique for biomedical imaging since it promises to give access to high resolution imaging in vivo. Among the various techniques used for endoscopic contrast generation, coherent anti-Stokes Raman scattering (CARS) is especially interesting. CARS endoscopy allows molecule specific imaging of unlabeled samples. In this contribution, we describe the design, implementation, and experimental characterization of a rigid, compact CARS endoscope with a spatial resolution of 750 nm over a field of view of roughly 250 μm. Omission of the relay optics and use of a gradient index lens specifically designed for this application allow one to realize these specifications in an endoscopic unit which is 2.2 mm wide over a length of 187 mm, making clinical applications during surgical interventions possible. Multimodal use of the endoscope is demonstrated with images of samples with neurosurgical relevance.
  • Item
    Computational tissue staining of non-linear multimodal imaging using supervised and unsupervised deep learning
    (Washington, DC : OSA, 2021) Pradhan, Pranita; Meyer, Tobias; Vieth, Michael; Stallmach, Andreas; Waldner, Maximilian; Schmitt, Michael; Popp, Juergen; Bocklitz, Thomas
    Hematoxylin and Eosin (H&E) staining is the 'gold-standard' method in histopathology. However, standard H&E staining of high-quality tissue sections requires long sample preparation times including sample embedding, which restricts its application for 'real-time' disease diagnosis. Due to this reason, a label-free alternative technique like non-linear multimodal (NLM) imaging, which is the combination of three non-linear optical modalities including coherent anti-Stokes Raman scattering, two-photon excitation fluorescence and second-harmonic generation, is proposed in this work. To correlate the information of the NLM images with H&E images, this work proposes computational staining of NLM images using deep learning models in a supervised and an unsupervised approach. In the supervised and the unsupervised approach, conditional generative adversarial networks (CGANs) and cycle conditional generative adversarial networks (cycle CGANs) are used, respectively. Both CGAN and cycle CGAN models generate pseudo H&E images, which are quantitatively analyzed based on mean squared error, structure similarity index and color shading similarity index. The mean of the three metrics calculated for the computationally generated H&E images indicate significant performance. Thus, utilizing CGAN and cycle CGAN models for computational staining is beneficial for diagnostic applications without performing a laboratory-based staining procedure. To the author's best knowledge, it is the first time that NLM images are computationally stained to H&E images using GANs in an unsupervised manner.