Search Results

Now showing 1 - 3 of 3
  • Item
    Plasma-Treated Water Affects Listeria monocytogenes Vitality and Biofilm Structure
    (Lausanne : Frontiers Media, 2021) Handorf, Oliver; Pauker, Viktoria Isabella; Weihe, Thomas; Schäfer, Jan; Freund, Eric; Schnabel, Uta; Bekeschus, Sander; Riedel, Katharina; Ehlbeck, Jörg
    Background: Plasma-generated compounds (PGCs) such as plasma-processed air (PPA) or plasma-treated water (PTW) offer an increasingly important alternative for the control of microorganisms in hard-to-reach areas found in several industrial applications including the food industry. To this end, we studied the antimicrobial capacity of PTW on the vitality and biofilm formation of Listeria monocytogenes, a common foodborne pathogen. Results: Using a microwave plasma (MidiPLexc), 10 ml of deionized water was treated for 100, 300, and 900 s (pre-treatment time), after which the bacterial biofilm was exposed to the PTW for 1, 3, and 5 min (post-treatment time) for each pre-treatment time, separately. Colony-forming units (CFU) were significantly reduced by 4.7 log10 ± 0.29 log10, as well as the metabolic activity decreased by 47.9 ± 9.47% and the cell vitality by 69.5 ± 2.1%, compared to the control biofilms. LIVE/DEAD staining and fluorescence microscopy showed a positive correlation between treatment and incubation times, as well as reduction in vitality. Atomic force microscopy (AFM) indicated changes in the structure quality of the bacterial biofilm. Conclusion: These results indicate a promising antimicrobial impact of plasma-treated water on Listeria monocytogenes, which may lead to more targeted applications of plasma decontamination in the food industry in the future.
  • Item
    Plasma-Functionalized Water: from Bench to Prototype for Fresh-Cut Lettuce
    (New York : Springer, 2020) Schnabel, Uta; Handorf, Oliver; Stachowiak, Joerg; Boehm, Daniela; Weit, Christoph; Weihe, Thomas; Schäfer, Jan; Below, Harald; Bourke, Paula; Ehlbeck, Joerg
    Fresh-cut produce like lettuce may contain a very high microbial load, including human pathogens. Therefore, the need for antimicrobial agents at post-harvest stages to mitigate microbial cross-contamination and growth is evident. Sanitation based on non-thermal plasma (NTP) reveals innovative food processing possibilities by application at different points along the food chain, for production, modification, and preservation, as well as in packaging of plant- and animal-based food. The aim of the present study was to evaluate the applicability of plasma-treated water (PTW) as antimicrobial process water additives for washing in fresh-cut lettuce processing. Antibacterial activities of PTW the natural occurring microflora of lettuce were examined. Different process variants of PTW application inside the washing process were investigated. Fresh-cut lettuce were investigated regarding microbiological safety and food quality. Samples were analyzed for antimicrobial and metabolic activity as well as metabolic vitality to prove food safety. The investigations for food quality included color and texture analyses and nitrate concentration detection in fresh tissue as well as microscopic measurements by scanning electron microscopy (SEM) and atomic force microscopy (AFM) for tissue surface structure and transmission electron microscopy (TEM) for cell organelle investigations. The application of PTW allowed up to 5 log10 cycle reduction, depending on the process variant and scale (lab and pilot scale). The increase of antimicrobial activity was accompanied by a reduction of metabolic activity, but not consequently by a decrease in metabolic vitality. Food quality was not affected by the use of PTW in the washing process of the fresh-cut lettuce. The promising results in color and texture were supported by the results of the microscopic assays. These promising results may lead to an industrial application of PTW as process water additive in fresh-cut produce processing to reduce the microbial load on the food surface and in addition in the process water or on food processing surfaces. © 2020, The Author(s).
  • Item
    The Effect of Plasma Treated Water Unit Processes on the Food Quality Characteristics of Fresh-Cut Endive
    (Lausanne : Frontiers Media, 2021-1-27) Schnabel, Uta; Handorf, Oliver; Winter, Hauke; Weihe, Thomas; Weit, Christoph; Schäfer, Jan; Stachowiak, Jörg; Boehm, Daniela; Below, Harald; Bourke, Paula; Ehlbeck, Jörg
    This study evaluated the impact of a defined plasma treated water (PTW) when applied to various stages within fresh-cut endive processing. The quality characteristic responses were investigated to establish the impact of the PTW unit processes and where PTW may be optimally applied in a model process line to retain or improve produce quality. Different stages of application of PTW within the washing process were investigated and compared to tap water and chlorine dioxide. Fresh-cut endive (Cichorium endivia L.) samples were analyzed for retention of food quality characteristics. Measurements included color, texture, and nitrate quantification. Effects on tissue surface and cell organelles were observed through scanning electron and atomic force microscopy. Overall, the endive quality characteristics were retained by incorporating PTW in the washing process. Furthermore, promising results for color and texture characteristics were observed, which were supported by the microscopic assays of the vegetal tissue. While ion chromatography detected high concentrations of nitrite and nitrate in PTW, these did not affect the nitrate concentration of the lettuce tissue post-processing and were below the concentrations within EU regulations. These results provide a pathway to scale up the industrial application of PTW to improve and retain quality characteristic retention of fresh leafy products, whilst also harnessing the plasma functionalized water as a process intervention for reducing microbial load at multiple points, whether on the food surface, within the process water or on food-processing surfaces.