Search Results

Now showing 1 - 2 of 2
  • Item
    Laboratory-generated mixtures of mineral dust particles with biological substances: Characterization of the particle mixing state and immersion freezing behavior
    (München : European Geopyhsical Union, 2016) Augustin-Bauditz, Stefanie; Wex, Heike; Denjean, Cyrielle; Hartmann, Susan; Schneider, Johannes; Schmidt, Susann; Ebert, Martin; Stratmann, Frank
    Biological particles such as bacteria, fungal spores or pollen are known to be efficient ice nucleating particles. Their ability to nucleate ice is due to ice nucleation active macromolecules (INMs). It has been suggested that these INMs maintain their nucleating ability even when they are separated from their original carriers. This opens the possibility of an accumulation of such INMs in soils, resulting in an internal mixture of mineral dust and INMs. If particles from such soils which contain biological INMs are then dispersed into the atmosphere due to wind erosion or agricultural processes, they could induce ice nucleation at temperatures typical for biological substances, i.e., above −20 up to almost 0 °C, while they might be characterized as mineral dust particles due to a possibly low content of biological material. We conducted a study within the research unit INUIT (Ice Nucleation research UnIT), where we investigated the ice nucleation behavior of mineral dust particles internally mixed with INM. Specifically, we mixed a pure mineral dust sample (illite-NX) with ice active biological material (birch pollen washing water) and quantified the immersion freezing behavior of the resulting particles utilizing the Leipzig Aerosol Cloud Interaction Simulator (LACIS). A very important topic concerning the investigations presented here as well as for atmospheric application is the characterization of the mixing state of aerosol particles. In the present study we used different methods like single-particle aerosol mass spectrometry, Scanning Electron Microscopy (SEM), Energy Dispersive X-ray analysis (EDX), and a Volatility–Hygroscopicity Tandem Differential Mobility Analyser (VH-TDMA) to investigate the mixing state of our generated aerosol. Not all applied methods performed similarly well in detecting small amounts of biological material on the mineral dust particles. Measuring the hygroscopicity/volatility of the mixed particles with the VH-TDMA was the most sensitive method. We found that internally mixed particles, containing ice active biological material, follow the ice nucleation behavior observed for the pure biological particles. We verified this by modeling the freezing behavior of the mixed particles with the Soccerball model (SBM). It can be concluded that a single INM located on a mineral dust particle determines the freezing behavior of that particle with the result that freezing occurs at temperatures at which pure mineral dust particles are not yet ice active.
  • Item
    Composition of ice particle residuals in mixed-phase clouds at Jungfraujoch (Switzerland): Enrichment and depletion of particle groups relative to total aerosol
    (Katlenburg-Lindau : EGU, 2018) Eriksen Hammer, Stine; Mertes, Stephan; Schneider, Johannes; Ebert, Martin; Kandler, Konrad; Weinbruch, Stephan
    Ice particle residuals (IRs) and the total aerosol particle population were sampled in parallel during mixed-phase cloud events at the high-altitude research station Jungfraujoch in January-February 2017. Particles were sampled behind an ice-selective counterflow impactor (Ice-CVI) for IRs and a heated total inlet for the total aerosol particles. A dilution set-up was used to collect total particles with the same sampling duration as for IRs to prevent overloading of the substrates. About 4000 particles from 10 Ice-CVI samples (from 7 days of cloud events at temperatures at the site between g-10 and g-18°C) were analysed and classified with operator-controlled scanning electron microscopy. Contamination particles (identified by their chemical composition), most likely originating from abrasion in the Ice-CVI and collection of secondary ice, were excluded from further analysis. Approximately 3000 total aerosol particles (IRs and interstitial particles) from 5 days in clouds were also analysed. Enrichment and depletion of the different particle groups (within the IR fraction relative to the total aerosol reservoir) are presented as an odds ratio relative to alumosilicate (particles only consisting of Al, Si, and O), which was chosen as reference due to the large enrichment of this group relative to total aerosol and the relatively high number concentration of this group in both total aerosol and the IR samples. Complex secondary particles and soot are the major particle groups in the total aerosol samples but are not found in the IR fraction and are hence strongly depleted. C-rich particles (most likely organic particles) showed a smaller enrichment compared to aluminosilicates by a factor of ∼ 20. The particle groups with enrichment similar to aluminosilicate are silica, Fe aluminosilicates, Ca-rich particles, Ca sulfates, sea-salt-containing particles, and metal/metal oxide. Other aluminosilicates-consisting of variable amounts of Na, K, Ca, Si, Al, O, Ti, and Fe-are somewhat more enriched (factor ∼ 2) and Pb-rich particles are more (factor ∼ 8) enriched than aluminosilicates. None of the sampled IR groups showed a temperature or size dependence in respect to ice activity, which might be due to the limited sampling temperature interval and the similar size of the particles. Footprint plots and wind roses could explain the different total aerosol composition in one sample (carbonaceous particle emission from the urban/industrial area of Po Valley), but this did not affect the IR composition. Taking into account the relative abundance of the particle groups in total aerosol and the ice nucleation ability, we found that silica, aluminosilicates, and other aluminosilicates were the most important ice particle residuals at Jungfraujoch during the mixed-phase cloud events in winter 2017.