Search Results

Now showing 1 - 3 of 3
  • Item
    Beamline-implemented stretching devices for in situ X-ray scattering experiments
    (Bristol : IOP Publ., 2022) Euchler, E.; Sambale, A.K.; Schneider, K.; Uhlig, K.; Boldt, R.; Stommel, M.; Stribeck, A.; Schwartzkopf, M.; Rothkirch, A.; Roth, S.V.
    Two recently developed experimental devices for investigating soft matter deformation are presented. Both devices exploit the capabilities of a modern synchrotron beamline to enable advanced and highly precise materials-science experiments in which X-ray scattering is registered. The devices can be operated both in monotonic as well as cyclic mode and are implemented into a beamline at DESY, Hamburg (Germany). Hence, relevant experimental parameters, such as displacement, force and temperature, are recorded synchronously with the individual X-ray scattering patterns. In addition, spatial variation of materials deformation can be monitored and recorded with optical microscopy. This unique sample environment enables in situ X-ray experiments in transmission, i.e. small- or wide-angle X-ray scattering (SAXS or WAXS), and in grazing-incidence geometry, i.e. grazing-incidence (GI-) SAXS or WAXS. One device with stepper motors is designed for studies of slow, (quasi-) static deformation and the other one with pneumatic actuators can be used for fast, impact deformation. Both devices are available to external beamline users, too.
  • Item
    Studying nanostructure gradients in injection-molded polypropylene/ montmorillonite composites by microbeam small-angle x-ray scattering
    (Abingdon : Taylor & Francis, 2014) Stribeck, N.; Schneider, K.; Zeinolebadi, A.; Li, X.; Sanporean, C.-G.; Vuluga, Z.; Iancu, S.; Duldner, M.; Santoro, G.; Roth, S.V.
    The core-shell structure in oriented cylindrical rods of polypropylene (PP) and nanoclay composites (NCs) from PP and montmorillonite (MMT) is studied by microbeam small-angle x-ray scattering (SAXS). The structure of neat PP is almost homogeneous across the rod showing regular semicrystalline stacks. In the NCs the discrete SAXS of arranged crystalline PP domains is limited to a skin zone of 300 μm thickness. Even there only frozen-in primary lamellae are detected. The core of the NCs is dominated by diffuse scattering from crystalline domains placed at random. The SAXS of the MMT flakes exhibits a complex skin-core gradient. Both the direction of the symmetry axis and the apparent perfection of flake-orientation are varying. Thus there is no local fiber symmetry, and the structure gradient cannot be reconstructed from a scan across the full rod. To overcome the problem the rods are machined. Scans across the residual webs are performed. For the first time webs have been carved out in two principal directions. Comparison of the corresponding two sets of SAXS patterns demonstrates the complexity of the MMT orientation. Close to the surface (< 1 mm) the flakes cling to the wall. The variation of the orientation distribution widths indicates the presence of both MMT flakes and grains. The grains have not been oriented in the flowing melt. An empirical equation is presented which describes the variation from skin to core of one component of the inclination angle of flake-shaped phyllosilicate filler particles.
  • Item
    Investigation of changes in crystalline and amorphous structure during deformation of nano-reinforced semi-crystalline polymers by space-resolved synchrotron saxs and waxs
    (Amsterdam : Elsevier, 2009) Schneider, K.; Schone, A.; Jun, T.-S.; Korsunsky, A.M.
    Complex structural changes occur in semi-crystalline polymers during deformation. In (nano-)filled systems the situation becomes even more complicated, since not only phase changes may take place, but also local (interfacial) failure between phases may occur. To help identify specific processes taking place within these systems, simultaneous small- and wide-angle X-ray scattering (SAXS/WAXS) measurements were performed using synchrotron radiation during in situ deformation. Using a highly focused beam, spatially resolved local information can be extracted by scanning the beam across the deformed/damaged region within the sample. The characteristic changes in the different phases are presented and discussed. While the study of WAXS patterns gives insight into the orientation and dimensions of the crystallites, SAXS provides information about the mutual arrangement of phases and the interfacial failure phenomena. Based on the analysis of the results obtained in our experiments it will be shown that the first changes in the crystalline phase appear long before macroscopic yielding of the sample is reached, i.e. the onset of irreversible deformation takes place. In the post-yield regime radical changes are observed in both the long- and short-range structures. It is concluded that the presence of nano-fillers exerts a strong influence on the establishment of microcrystalline structure, and hence also on the deformation behaviour at the microscopic scale.