Search Results

Now showing 1 - 4 of 4
Loading...
Thumbnail Image
Item

Impact of mucus modulation by N-acetylcysteine on nanoparticle toxicity

2023, Meziu, Enkeleda, Shehu, Kristela, Koch, Marcus, Schneider, Marc, Kraegeloh, Annette

Human respiratory mucus is a biological hydrogel that forms a protective barrier for the underlying epithelium. Modulation of the mucus layer has been employed as a strategy to enhance transmucosal drug carrier transport. However, a drawback of this strategy is a potential reduction of the mucus barrier properties, in particular in situations with an increased exposure to particles. In this study, we investigated the impact of mucus modulation on its protective role. In vitro mucus was produced by Calu-3 cells, cultivated at the air-liquid interface for 21 days and used for further testing as formed on top of the cells. Analysis of confocal 3D imaging data revealed that after 21 days Calu-3 cells secrete a mucus layer with a thickness of 24 ± 6 μm. Mucus appeared to restrict penetration of 500 nm carboxyl-modified polystyrene particles to the upper 5–10 μm of the layer. Furthermore, a mucus modulation protocol using aerosolized N-acetylcysteine (NAC) was developed. This treatment enhanced the penetration of particles through the mucus down to deeper layers by means of the mucolytic action of NAC. These findings were supported by cytotoxicity data, indicating that intact mucus protects the underlying epithelium from particle-induced effects on membrane integrity. The impact of NAC treatment on the protective properties of mucus was probed by using 50 and 100 nm amine-modified and 50 nm carboxyl-modified polystyrene nanoparticles, respectively. Cytotoxicity was only induced by the amine-modified particles in combination with NAC treatment, implying a reduced protective function of modulated mucus. Overall, our data emphasize the importance of integrating an assessment of the protective function of mucus into the development of therapy approaches involving mucus modulation.

Loading...
Thumbnail Image
Item

Reliable release testing for nanoparticles with the NanoDis System, an innovative sample and separate technique

2021, Lombardo, Sonia M., Türeli, Nazende Günday, Koch, Marcus, Schneider, Marc, Türeli, Akif E.

One of the critical quality attributes of nanoparticle formulations is drug release. Their release properties should therefore be well characterized with predictive and discriminative methods. However, there is presently still no standard method for the release testing of extended release nanoformulations. Dialysis techniques are widely used in the literature but suffer from severe drawbacks. Burst release of formulations can be masked by slow permeation kinetics of the free drug through the dialysis membrane, saturation in the membrane, and absence of agitation in the membrane. In this study, the release profile of poly(lactic co-glycolic) (PLGA) nanocapsules loaded with all-trans retinoic acid was characterized using an innovative sample and separate set-up, the NanoDis System, and compared to the release profile measured with a dialysis technique. The NanoDis System showed clear superiority over the dialysis method and was able to accurately characterize the burst release from the capsules and furthermore discriminate between different all-trans retinoic acid nanoparticle formulations.

Loading...
Thumbnail Image
Item

Cylindrical Microparticles Composed of Mesoporous Silica Nanoparticles for the Targeted Delivery of a Small Molecule and a Macromolecular Drug to the Lungs: Exemplified with Curcumin and siRNA

2021, Fischer, Thorben, Winter, Inga, Drumm, Robert, Schneider, Marc

The transport of macromolecular drugs such as oligonucleotides into the lungs has become increasingly relevant in recent years due to their high potency. However, the chemical structure of this group of drugs poses a hurdle to their delivery, caused by the negative charge, membrane impermeability and instability. For example, siRNA to reduce tumour necrosis factor alpha (TNF-α) secretion to reduce inflammatory signals has been successfully delivered by inhalation. In order to increase the effect of the treatment, a co-transport of another anti-inflammatory ingredient was applied. Combining curcumin-loaded mesoporous silica nanoparticles in nanostructured cylindrical microparticles stabilized by the layer-by-layer technique using polyanionic siRNA against TNF-α was used for demonstration. This system showed aerodynamic properties suited for lung deposition (mass median aerodynamic diameter of 2.85 ± 0.44 µm). Furthermore, these inhalable carriers showed no acute in vitro toxicity tested in both alveolar epithelial cells and macrophages up to 48 h incubation. Ultimately, TNF-α release was significantly reduced by the particles, showing an improved activity co-delivering both drugs using such a drug-delivery system for specific inhibition of TNF-α in the lungs.

Loading...
Thumbnail Image
Item

Mechanism and determinants of nanoparticle penetration through human skin

2011, Kraus, Tobias, Labouta, Hagar I., El-Khordagui, Labiba K., Schneider, Marc

The ability of nanoparticles to penetrate the stratum corneum was the focus of several studies. Yet, there are controversial issues available for particle penetration due to different experimental setups. Meanwhile, there is little known about the mechanism and determinants of their penetration. In this paper the penetration of four model gold nanoparticles of diameter 6 and 15 nm, differing in surface polarity and the nature of the vehicle, through human skin was studied using multiphoton microscopy. This is in an attempt to profoundly investigate the parameters governing particle penetration through human skin. Our results imply that nanoparticles at this size range permeate the stratum corneum in a similar manner to drug molecules, mainly through the intercellular pathways. However, due to their particulate nature, permeation is also dependent on the complex microstructure of the stratum corneum with its tortuous aqueous and lipidic channels, as shown from our experiments performed using skin of different grades of barrier integrity. The vehicle (toluene-versus-water) had a minimal effect on skin penetration of gold nanoparticles. Other considerations in setting up a penetration experiment for nanoparticles were also studied. The results obtained are important for designing a new transdermal carrier and for a basic understanding of skin–nanoparticle interaction.