Search Results

Now showing 1 - 2 of 2
  • Item
    Non-invasive prospection techniques and direct push sensing as high-resolution validation tools in wetland geoarchaeology – Artificial water supply at a Carolingian canal in South Germany?
    (Amsterdam [u.a.] : Elsevier Science, 2020) Rabiger-Völlmer, Johannes; Schmidt, Johannes; Linzen, Sven; Schneider, Michael; Werban, Ulrike; Dietrich, Peter; Wilken, Dennis; Wunderlich, Tina; Fediuk, Annika; Berg, Stefanie; Werther, Lukas; Zielhofer, Christoph
    The prospection of (geo-)archaeological sites yield important knowledge about the concept and the utilisation of pre-historical and historical infrastructure. The satisfactory conduction of classical prospection methods like archaeological excavations or geoarchaeological vibra-coring might be challenging in the case of large sites or difficult underground conditions. This is particularly problematic in wetlands featuring a high groundwater table and high compaction rates of organic layers. In this study, we provide an alternative and non- to minimal-invasive exploration approach to discover hydro-engineering structures for artificial water supply in the surrounding of a Carolingian summit canal in South Germany. The Early Medieval Fossa Carolina was intended 792/793 CE to bridge the Central European watershed between Rhine-Main and Danube catchments. As the canal was constructed as a summit canal, an artificial water supply at the highest levels seemed very likely or even obligatory. In order to explore these obligatory hydro-engineering features, we use a wide range of on-site and off-site tools in a spatial hierarchical way. Our approach includes the large-scale SQUID magnetic survey and the sighting of historical maps. Furthermore, we integrate high-resolution direct push colour logs, and subsequent vibra-coring for small-scale stratigraphical verification and sedimentological analyses. The SQUID magnetic survey and related depth models discover two pronounced linear anomalies that might represent potential artificial water inlets in the North-Eastern and Northern Sections of the canal. I) In the North-Eastern Section, direct push colour logs, vibra-coring and 14C dating provide no evidence for a Carolingian hydro-engineering feature but reveal a natural lenticular structure of Early Holocene age. II) The linear magnetic anomaly in the Northern Section can be excluded with high probability as a hydro-engineering structure as well. Here, direct push colour logs, vibra-coring, 14C dating and the comparison with a historic map reveal evidence for a historic gravel road. Thus, we have nicely verified the magnetic information but have no prove for an artificial Carolingian water inlet from the Swabian Rezat River that contradicts with assumptions of former studies. © 2020 The Authors
  • Item
    Ultrafast Demagnetization Dominates Fluence Dependence of Magnetic Scattering at Co M Edges
    (College Park, Md. : APS, 2020) Schneider, Michael; Pfau, Bastian; Günther, Christian M.; von Korff Schmising, Clemens; Weder, David; Geilhufe, Jan; Perron, Jonathan; Capotondi, Flavio; Pedersoli, Emanuele; Manfredda, Michele; Hennecke, Martin; Vodungbo, Boris; Lüning, Jan; Eisebitt, Stefan
    We systematically study the fluence dependence of the resonant scattering cross-section from magnetic domains in Co/Pd-based multilayers. Samples are probed with single extreme ultraviolet (XUV) pulses of femtosecond duration tuned to the Co M3,2 absorption resonances using the FERMI@Elettra free-electron laser. We report quantitative data over 3 orders of magnitude in fluence, covering 16  mJ/cm2/pulse to 10 000  mJ/cm2/pulse with pulse lengths of 70 fs and 120 fs. A progressive quenching of the diffraction cross-section with fluence is observed. Compression of the same pulse energy into a shorter pulse—implying an increased XUV peak electric field—results in a reduced quenching of the resonant diffraction at the Co M3,2 edge. We conclude that the quenching effect observed for resonant scattering involving the short-lived Co 3p core vacancies is noncoherent in nature. This finding is in contrast to previous reports investigating resonant scattering involving the longer-lived Co 2p states, where stimulated emission has been found to be important. A phenomenological model based on XUV-induced ultrafast demagnetization is able to reproduce our entire set of experimental data and is found to be consistent with independent magneto-optical measurements of the demagnetization dynamics on the same samples.