Search Results

Now showing 1 - 3 of 3
  • Item
    The patterning toolbox FIB-o-mat: Exploiting the full potential of focused helium ions for nanofabrication
    (Frankfurt, M. : Beilstein-Institut zur Förderung der Chemischen Wissenschaften, 2021) Deinhart, Victor; Kern, Lisa-Marie; Kirchhof, Jan N.; Juergensen, Sabrina; Sturm, Joris; Krauss, Enno; Feichtner, Thorsten; Kovalchuk, Sviatoslav; Schneider, Michael; Engel, Dieter; Pfau, Bastian; Hecht, Bert; Bolotin, Kirill I.; Reich, Stephanie; Höflich, Katja
    Focused beams of helium ions are a powerful tool for high-fidelity machining with spatial precision below 5 nm. Achieving such a high patterning precision over large areas and for different materials in a reproducible manner, however, is not trivial. Here, we introduce the Python toolbox FIB-o-mat for automated pattern creation and optimization, providing full flexibility to accomplish demanding patterning tasks. FIB-o-mat offers high-level pattern creation, enabling high-fidelity large-area patterning and systematic variations in geometry and raster settings. It also offers low-level beam path creation, providing full control over the beam movement and including sophisticated optimization tools. Three applications showcasing the potential of He ion beam nanofabrication for two-dimensional material systems and devices using FIB-o-mat are presented.
  • Item
    Non-invasive prospection techniques and direct push sensing as high-resolution validation tools in wetland geoarchaeology – Artificial water supply at a Carolingian canal in South Germany?
    (Amsterdam [u.a.] : Elsevier Science, 2020) Rabiger-Völlmer, Johannes; Schmidt, Johannes; Linzen, Sven; Schneider, Michael; Werban, Ulrike; Dietrich, Peter; Wilken, Dennis; Wunderlich, Tina; Fediuk, Annika; Berg, Stefanie; Werther, Lukas; Zielhofer, Christoph
    The prospection of (geo-)archaeological sites yield important knowledge about the concept and the utilisation of pre-historical and historical infrastructure. The satisfactory conduction of classical prospection methods like archaeological excavations or geoarchaeological vibra-coring might be challenging in the case of large sites or difficult underground conditions. This is particularly problematic in wetlands featuring a high groundwater table and high compaction rates of organic layers. In this study, we provide an alternative and non- to minimal-invasive exploration approach to discover hydro-engineering structures for artificial water supply in the surrounding of a Carolingian summit canal in South Germany. The Early Medieval Fossa Carolina was intended 792/793 CE to bridge the Central European watershed between Rhine-Main and Danube catchments. As the canal was constructed as a summit canal, an artificial water supply at the highest levels seemed very likely or even obligatory. In order to explore these obligatory hydro-engineering features, we use a wide range of on-site and off-site tools in a spatial hierarchical way. Our approach includes the large-scale SQUID magnetic survey and the sighting of historical maps. Furthermore, we integrate high-resolution direct push colour logs, and subsequent vibra-coring for small-scale stratigraphical verification and sedimentological analyses. The SQUID magnetic survey and related depth models discover two pronounced linear anomalies that might represent potential artificial water inlets in the North-Eastern and Northern Sections of the canal. I) In the North-Eastern Section, direct push colour logs, vibra-coring and 14C dating provide no evidence for a Carolingian hydro-engineering feature but reveal a natural lenticular structure of Early Holocene age. II) The linear magnetic anomaly in the Northern Section can be excluded with high probability as a hydro-engineering structure as well. Here, direct push colour logs, vibra-coring, 14C dating and the comparison with a historic map reveal evidence for a historic gravel road. Thus, we have nicely verified the magnetic information but have no prove for an artificial Carolingian water inlet from the Swabian Rezat River that contradicts with assumptions of former studies. © 2020 The Authors
  • Item
    Generating circularly polarized radiation in the extreme ultraviolet spectral range at the free-electron laser FLASH
    (Melville, NY : American Institute of Physics, 2017) von Korff Schmising, Clemens; Weder, David; Noll, Tino; Pfau, Bastian; Hennecke, Martin; Strüber, Christian; Radu, Ilie; Schneider, Michael; Staeck, Steffen; Günther, Christian M.; Lüning, Jan; Merhe, Alaa el dine; Buck, Jens; Hartmann, Gregor; Viefhaus, Jens; Treusch, Rolf; Eisebitt, Stefan
    A new device for polarization control at the free electron laser facility FLASH1 at DESY has been commissioned for user operation. The polarizer is based on phase retardation upon reflection off metallic mirrors. Its performance is characterized in three independent measurements and confirms the theoretical predictions of efficient and broadband generation of circularly polarized radiation in the extreme ultraviolet spectral range from 35 eV to 90 eV. The degree of circular polarization reaches up to 90% while maintaining high total transmission values exceeding 30%. The simple design of the device allows straightforward alignment for user operation and rapid switching between left and right circularly polarized radiation.