Search Results

Now showing 1 - 3 of 3
  • Item
    L-(+)-Lactic Acid from Reed: Comparing Various Resources for the Nutrient Provision of B. coagulans
    (Basel : MDPI, 2020) Schroedter, Linda; Schneider, Roland; Remus, Lisa; Venus, Joachim
    Biotechnological production of lactic acid (LA) is based on the so-called first generation feedstocks, meaning sugars derived from food and feed crops such as corn, sugarcane and cassava. The aim of this study was to exploit the potential of a second generation resource: Common reed (Phragmites australis) is a powerfully reproducing sweet grass which grows in wetlands and creates vast monocultural populations. This lignocellulose biomass bears the possibility to be refined to value-added products, without competing with agro industrial land. Besides utilizing reed as a renewable and inexpensive substrate, low-cost nutritional supplementation was analyzed for the fermentation of thermophilic Bacillus coagulans. Various nutritional sources such as baker’s and brewer’s yeast, lucerne green juice and tryptone were investigated for the replacement of yeast extract. The structure of the lignocellulosic material was tackled by chemical treatment (1% NaOH) and enzymatic hydrolysis (Cellic® CTec2). B. coagulans DSM ID 14-300 was employed for the homofermentative conversion of the released hexose and pentose sugars to polymerizable L-(+)-LA of over 99.5% optical purity. The addition of autolyzed baker’s yeast led to the best results of fermentation, enabling an LA titer of 28.3 g L−1 and a yield of 91.6%.
  • Item
    Pilot Scale for Production and Purification of Lactic Acid from Ceratonia siliqua L. (Carob) Bagasse
    (Basel : MDPI, 2022) Azaizeh, Hassan; Abu Tayeh, Hiba Nazmi; Schneider, Roland; Venus, Joachim
    The bioconversion of lignocellulose and organic waste bagasse to lactic acid (LA) is an important alternative process requiring valorization as a potentially viable method in the production of pure LA, to be utilized for various purposes. Carob (Ceratonia siliqua L.) biomass was used for the production of LA, using a thermophilic Bacillus coagulans isolate, cultivated in a batch pilot scale of 35 L fermenters without yeast extract supplementation, and operated for 50 h. During the fermentation process, most of the degradable sugar was consumed within 35 h and resulted in the production of 46.9 g/L LA, with a calculated LA yield of 0.72 g/g sugars and productivity at the log phase of 1.69 g/L/h. The use of LA for different industrial applications requires high purity; therefore, a downstream process (DSP) consisting of different purification stages was used, enabling us to reach up to 99.9% (w/w) product purity, which indicates that the process was very effective. The overall almost pure L-LA yield of the DSP was 56%, which indicates that a considerable amount of LA (46%) was lost during the different DSP stages. This is the first study in which carob biomass bagasse has been tested on a pilot scale for LA production, showing the industrial feasibility of the fermentation process.
  • Item
    Production of Lactic Acid from Carob, Banana and Sugarcane Lignocellulose Biomass
    (Basel : MDPI AG, 2020) Azaizeh, Hassan; Abu Tayeh, Hiba N.; Schneider, Roland; Klongklaew, Augchararat; Venus, Joachim
    Lignocellulosic biomass from agricultural residues is a promising feedstock for lactic acid (LA) production. The aim of the current study was to investigate the production of LA from different lignocellulosic biomass. The LA production from banana peduncles using strain Bacillus coagulans with yeast extract resulted in 26.6 g LA·L-1, and yield of 0.90 g LA·g-1 sugars. The sugarcane fermentation with yeast extract resulted in 46.5 g LA·L-1, and yield of 0.88 g LA·g-1 sugars. Carob showed that addition of yeast extract resulted in higher productivity of 3.2 g LA·L-1·h-1 compared to without yeast extract where1.95 g LA·L-1·h-1 was obtained. Interestingly, similar LA production was obtained by the end where 54.8 and 51.4 g·L-1 were obtained with and without yeast extract, respectively. A pilot scale of 35 L using carob biomass fermentation without yeast extract resulted in yield of 0.84 g LA·g-1 sugars, and productivity of 2.30 g LA·L-1·h-1 which indicate a very promising process for future industrial production of LA.