Search Results

Now showing 1 - 2 of 2
  • Item
    Tailor-made nanostructures bridging chaos and order for highly efficient white organic light-emitting diodes
    (London : Nature Publishing Group, 2019) Li, Y.; Kovačič, M.; Westphalen, J.; Oswald, S.; Ma, Z.; Hänisch, C.; Will, P.-A.; Jiang, L.; Junghaehnel, M.; Scholz, R.; Lenk, S.; Reineke, S.
    Organic light-emitting diodes (OLEDs) suffer from notorious light trapping, resulting in only moderate external quantum efficiencies. Here, we report a facile, scalable, lithography-free method to generate controllable nanostructures with directional randomness and dimensional order, significantly boosting the efficiency of white OLEDs. Mechanical deformations form on the surface of poly(dimethylsiloxane) in response to compressive stress release, initialized by reactive ions etching with periodicity and depth distribution ranging from dozens of nanometers to micrometers. We demonstrate the possibility of independently tuning the average depth and the dominant periodicity. Integrating these nanostructures into a two-unit tandem white organic light-emitting diode, a maximum external quantum efficiency of 76.3% and a luminous efficacy of 95.7 lm W−1 are achieved with extracted substrate modes. The enhancement factor of 1.53 ± 0.12 at 10,000 cd m−2 is obtained. An optical model is built by considering the dipole orientation, emitting wavelength, and the dipole position on the sinusoidal nanotexture.
  • Item
    Energy-dependent dielectric tensor axes in monoclinic α-3,4,9,10-perylene tetracarboxylic dianhydride
    (Amsterdam [u.a.] : Elsevier, 2023) Alonso, M.I.; Garriga, M.; Ossó, J.O.; Schreiber, F.; Scholz, R.
    We have determined the complex dielectric tensor of single crystalline 3,4,9,10-perylene tetracarboxylic dianhydride (α-PTCDA) as a function of energy in the range between 1.4 and 5.0 eV. The results obtained reflect the monoclinic symmetry of the crystal: The principal axes of the real and the imaginary part of the tensor in general do not coincide and show chromatic dispersion. Monoclinic behavior allows rotation of the components ɛX and ɛZ in the plane perpendicular to the unique symmetry axis Y. The experimental results indicate that the energies of the optical transitions observed in the weak ɛX component coincide with energies in which a resonance effect due to coupling with the stronger ɛZ component occurs. These resonances appear at energies close to electronic excitations such as the optical gap, the transport gap and the highest occupied molecular orbital–lowest unoccupied molecular orbital (HOMO–LUMO) peak-to-peak gap and their assignments are discussed based on theoretical calculations.