Search Results

Now showing 1 - 3 of 3
  • Item
    Kaskadennutzung von Lignocellulose : LX-Verfahren trifft auf B. coagulans
    (Heidelberg : Spektrum, 2020) Schroedter, Linda; Streffer, Friedrich; Streffer, Katrin; Unger, Peter; Venus, Joachim
    Investigating alternatives for petrobased substrates, lignocellulose is an interesting yet complex feedstock that offers various possibilities for the design of new and sustainable chemical routes. The novel energy-saving LX-pretreatment was combined with thermophilic Bacillus coagulans. By this, corn straw was used in an innovative cascade obtaining biogas, lignin as well as polymerisable L-(+)-lactic acid of over 99 percents optical purity. © 2020, Die Autoren.
  • Item
    Multi-Product Lactic Acid Bacteria Fermentations: A Review
    (Basel : MDPI AG, 2020) Mora-Villalobos, José Aníbal; Montero-Zamora, Jéssica; Barboza, Natalia; Rojas-Garbanzo, Carolina; Usaga, Jessie; Redondo-Solano, Mauricio; Schroedter, Linda; Olszewska-Widdrat, Agata; López-Gómez, José Pablo
    Industrial biotechnology is a continuously expanding field focused on the application of microorganisms to produce chemicals using renewable sources as substrates. Currently, an increasing interest in new versatile processes, able to utilize a variety of substrates to obtain diverse products, can be observed. A robust microbial strain is critical in the creation of such processes. Lactic acid bacteria (LAB) are used to produce a wide variety of chemicals with high commercial interest. Lactic acid (LA) is the most predominant industrial product obtained from LAB fermentations, and its production is forecasted to rise as the result of the increasing demand of polylactic acid. Hence, the creation of new ways to revalorize LA production processes is of high interest and could further enhance its economic value. Therefore, this review explores some co-products of LA fermentations, derived from LAB, with special focus on bacteriocins, lipoteichoic acid, and probiotics. Finally, a multi-product process involving LA and the other compounds of interest is proposed.
  • Item
    Biorefinery Concept Employing Bacillus coagulans: LX-Lignin and L-(+)-Lactic Acid from Lignocellulose
    (Basel : MDPI, 2021) Schroedter, Linda; Streffer, Friedrich; Streffer, Katrin; Unger, Peter; Venus, Joachim
    A new biorefinery concept is proposed that integrates the novel LX-Pretreatment with the fermentative production of L-(+)-lactic acid. Lignocellulose was chosen as a substrate that does not compete with the provision of food or feed. Furthermore, it contains lignin, a promising new chemical building material which is the largest renewable source for aromatic compounds. Two substrates were investigated: rye straw (RS) as a residue from agriculture, as well as the fibrous digestate of an anaerobic biogas plant operated with energy corn (DCS). Besides the prior production of biogas from energy corn, chemically exploitable LX-Lignin was produced from both sources, creating a product with a low carbohydrate and ash content (90.3% and 88.2% of acid insoluble lignin). Regarding the cellulose fraction of the biomass, enzymatic hydrolysis and fermentation experiments were conducted, comparing a separate (SHF), simultaneous (SSF) and prehydrolyzed simultaneous saccharification and fermentation (PSSF) approach. For this purpose, thermophilic B. coagulans 14-300 was utilized, reaching 38.0 g L−1 LA in 32 h SSF from pretreated RS and 18.3 g L−1 LA in 30 h PSSF from pretreated DCS with optical purities of 99%.